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Chern Classes

In this talk, all our topological spaces will be paracompact Hausdorff, and our vector bundles
will be complex. Let BunGLn(C) be the functor which sends each topological space to the
set of isomorphism classes of its n-dimensional vector bundles. It is a basic fact that this
functor factors through the homotopy category, so we have a functor

BunGLn(C) : HTopop → Set

Observe that ordinary cohomology is another example of a functor between those two cate-
gories.

Definition. A characteristic class for n-dimensional vector bundles is a natural transfor-
mation BunGLn(C) =⇒ H∗(−,Z)

Since BunGLn(C) is represented by BU(n), characteristic classes are in correspondence
with cohomology classes in H∗(BU(n),Z). Our first goal will be to understand this ring.

First: n = 1

We know that BU(1) = CP∞. Its cohomology is easy to compute via its cell decomposition,
we have

H∗(BU(1),Z) = Z[x]

where deg x = 2. In particular, we see that all characteristic classes for line bundles are
polynomials in x.

Definition. c1 = x is called the (universal) first Chern class.

The first Chern class of a line bundle is then obtained by pullback of the universal one via
a classifying map. This implies that c1 vanishes for trivial line bundles, since the classifying
map factors through a point. Conversely, since BU(1) = K(Z, 2), we see that c1 is the
universal cohomology class of degree 2. Therefore, if a line bundle has vanishing first Chern
class, its classifying map has to be constant, and therefore the bundle has to be trivial.
Therefore we see that for n = 1, vanishing of the Chern classes is equivalent to the bundle
being trivial. This won’t happen for n > 1.
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Case n > 1

Let U(1)n ⊂ U(n) be the diagonal subgroup (one could carry out these arguments for a
general group by taking a maximal torus). This inclusion induces a map

BU(1)n → BU(n)

which is invariant under the action of Sn permuting the factors on the left. If we think of
BU(1)n as the classifying space for n-tuples of line bundles, then that map is induced by
direct sum. The fiber is U(n)/U(1)n which is equivalent to the flag variety of Cn (indeed,
the space BU(1)n may be obtained from BU(n) from the splitting principle applied to the
universal bundle).

From the above map we get a map in cohomology

π∗ : H∗(BU(n),Z)→ H∗(BU(1)n,Z)Sn = Z[x1, . . . , , xn]Sn = Z[e1, . . . , en]

Here xi are the generators of the cohomology of each BU(1) factor, and they are called the
Chern roots. As usual, the ei are the elementary symmetric polynomials on the xi.

Theorem. The map π∗ is an isomorphism. In particular, all characteristic classes are
polynomials in the ci, where π∗ci = ei.

Proof. We shall proceed by induction, splitting one copy of BU(1) at a time. First, from
the map U(1)× U(n− 1)→ U(n) (mapping a pair of matrices to a block diagonal matrix)
we get

BU(1)×BU(n− 1)→ BU(n)

The fiber of this map is CPn, whose cohomology is Z[x1]/x
n
1 . The Leray-Hirsch theorem then

tells us that 1, x1, . . . , x
n−1
1 is a basis for H∗(BU(1) × BU(n − 1),Z) as a H∗(BU(n),Z)-

module. Write
xn1 = c1x

n−1
1 − c2xn−21 + c3x

n−3
1 . . .

with ci ∈ H2i(BU(n),Z).
In particular, observe that H∗(BU(n),Z)→ H∗(BU(1)×BU(n− 1),Z) is injective. By

an inductive argument, we see that π∗ : H∗(BU(n),Z) → H∗(BU(1)n,Z) is also injective.
From the two equalities

xn1 = π∗c1x
n−1
1 − π∗c2xn−21 + π∗c3x

n−3
1 . . .

and
xn1 = e1x

n−1
1 − e2xn−21 + e3x

n−3
1 . . .

one may conclude that π∗ci = ei. In particular, π∗ is also surjective, so it is an isomorphism,
as we wanted.

Definition. The total Chern class is c =
∑
ci = 1 + c1 + c2 + . . ..
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We now take a look at what happens with Chern classes of direct sums of bundles. Denote
by c(d) the total Chern class for d-dimensional vector bundles. Consider the map

U(k)× U(l)→ U(k + l)

(α, β)→
(
α 0
0 β

)
It induces a map

BU(k)×BU(l)→ BU(k + l)

which is the classifying map for the direct sum of the universal bundles on BU(k) and BU(l).

Theorem (Whitney product formula). The pullback of c(k+l) along the above map is c(k)∪c(l).
Equivalently, if E,F are vector bundles on a space X, then c(E ⊕ F ) = c(E) ∪ c(F ).

Proof. This is an application of the splitting principle. Consider the diagram

BU(1)k ×BU(1)l BU(1)k+l

BU(k)×BU(l) BU(k + l)

=

All the maps in cohomology are injections, and the total Chern classes satisfy

c(k+l) =
k+l∏
1

(1 + xi)

c(k) =
k∏
1

(1 + xi)

c(l) =
k+l∏
k+1

(1 + xi)

so the theorem follows.

Corollary. Chern classes are stably invariant.

By the splitting principle, the Chern classes are determined by their values on line bun-
dles, and the Whitney product formula. A common approach to define Chern classes is to
take these properties as axioms, and then show that there is a unique collection of classes
satisfying those axioms.

Chern Character

Definition. As before, let x1, . . . , xn be the Chern roots for n-dimensional vector bundles.
The (universal) Chern character is defined to be

ch = expx1 + expx2 + . . .+ expxn ∈
∏
i

H2i(BU(n),Q)
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Theorem. Let E,F be two vector bundles over a space X. Then

i. ch(E ⊕ F ) = ch(E) + ch(F )

ii. ch(E ⊗ F ) = ch(E) ∪ ch(F )

Proof. This is again an application of the splitting principle. We may assume E,F to be line
bundles. The first item is immediate in this case. The second item reduces to showing that
the first Chern class of a product of two line bundles is the sum of the first Chern classes of
those bundles.

Consider the following diagram

BU(1)×BU(1) BU(1)

CP1 × CP1

⊗

O(1)×O(1)

The map from projective space to BU(1) is an isomorphism on H2, so it suffices to show
that

c1(O(1)⊗O(1)) = c1(O(1)) + c1(O(1))

Now, O(1)⊗O(1) is the pullback of the twisting sheaf by the Segre embedding. This is
a degree two map so the above equality follows.

From the above theorem we see that the Chern character gives a morphism

ch : K0(X)→ Heven(X,Q)

Theorem. Let X be a compact CW-complex. Then

ch : K0(X)⊗Q→ Heven(X,Q)

is an isomorphism

Remark. Even if X is non-compact one gets a similar result, although one has to work with
rationalized K-theory, which is not the same as K0(X)⊗Q.

Proof. This proof may be seen as a statement about spectra. The rationalized K-theory
spectrum has a map to a product of Eilenberg-MacLane spectra, which is an rational iso-
morphism since both theories agree at the point. Then rational homotopy theory implies
that these two spaces are equivalent.

To keep it simple, we shall now give a version of that argument using the language of
cohomology theories. We have two cohomology theories

K∗Q = K∗ ⊗Q

and
Ĥ∗ =

∏
j∈Z

H∗+2j(−,Q)
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The Chern character gives a natural transformation K0
Q → Ĥ0. Moreover, from the diagram

K−1Q (X) Ĥ−1Q (X)

K0
Q(SX) Ĥ0(SX)

ch

= =

ch

one is able to define ch in degree −1. From the periodicity that both theories have, ch
may then be extended to a natural transformation KQ → Ĥ. It may be checked that it gives
an isomorphism KQ(pt) = Ĥ(pt). Then one concludes that ch is an isomorphism for any
compact CW-complex, by induction on the filtration given by the skeleta.

A nice way of running the last inductive argument is by using the Atiyah-Hirsebruch
spectral sequence

Theorem. Let h be a cohomology theory and X be a finite CW complex. Then we have a
spectral sequence

E2 = Hp(X, hq(pt)) =⇒ hp+q(X)

The construction of this sequence is similar to the Serre spectral sequence, by considering
the filtration by skeleta of the CW. In fact, a similar sequence exists for a fibration F →
Y → X, in which case one has

E2 = Hp(X, hq(F )) =⇒ hp+q(Y )

This reduces to the Serre spectral sequence in the case that h is ordinary cohomology.
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