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In this talk all our spaces will be paracompact Hausdorff and our bundles complex. Recall
that the usual Chern character is an isomorphism

ch : K∗(X,Q)
=−→ Heven/odd(X,Q)

defined by the splitting principle and the fact that ch(L) = exp c1(L) for L a line bundle.
The goal of this talk is to generalize this isomorphism to the case of twisted K-theory, and
then to equivariant K-theory.

Twisted Chern Character

Let’s first get an idea of what the twisted Chern character is supposed to be, and why one
should expect it to exist. A twist for (rational) K-theory over a space is the same as a bundle
with fiber the classifying spectrum for (rational) K-theory (BU × Z)⊗Q. The usual Chern
character gives an isomorphism between this spectrum and a product of Eilenberg Mac-
Lane spectra

∏
n≥0K(Q, 2n). Therefore K-theory twists are the same as bundles with fiber∏

n≥0K(Q, 2n), which is the same as a twist for ordinary cohomology. The corresponding
isomorphism between spaces of sections is the twisted Chern character.

A bit more precisely, the K-theory twists we consider are given by BU(1)-principal bun-
dles. We have an action of BU(1) on

∏
n≥0K(Q, 2n) given by multiplication by the Chern

character. The associated bundle is the corresponding twisted cohomology bundle. Con-
cretely, given a cover Ui for X trivializing the twist, we have transition line bundles

Ui ∩ Uj = Uij ← Lij

Let ωij be a cocycle representing c1(Lij). Then the twisted ordinary cochains are trivialized
over Ui as

∏
n≥0C

∗(Ui,Q)(2n), with transitions being multiplication by expωij. Now, choose
νi ∈ C2(Ui,Q) such that ωij = νi−νj. Then we can use exp νi to conjugate

∏
C∗(Ui,Q)(2n)

so that transitions become trivial, but the differential becomes d−dνi. Our model for twisted
differential cohomology will then be the C∗(X,Q)[[β]] with the twisted differential d − βη,
where β is a formal variable of degree −2 (Bott element) and η is a global 3-cocycle obtained
by patching dνi (it turns out that η is a representative of the Dixmier-Douady class of the
twist).

We shall now carry this out with a concrete model of cohomology. Observe that in general
(d− βη)2 = η2β2 which is only cohomologous to zero. So we should work in a commutative
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model. Moreover, in order to find νi as above, we need vanishing of cohomology of our sheaf of
cochains. Although the construction may be carried over Q, we will work over manifolds and
use de Rham cochains, which are indeed commutative and don’t have cohomology thanks to
the existence of partitions of unity. Our first goal will then be to find a cochain representative
for the Chern character in differential forms. This is what Chern-Weil Theory does for us.

Chern-Weil theory

Let M be a manifold and E →M be a hermitian vector bundle. Let ∇ be a connection on
E. We can extend ∇ to operators ∇ : Ωp(M) ⊗ E → Ωp+1(M) ⊗ E satisfying the Leibnitz
rule. One may check that ∇2 is Ω∗(M)-linear, and so it is given by multiplication by a
section F∇ of Ω2(M,EndE) (here by EndE we mean skew-hermitian endomorphisms of E),
called the curvature of the connection. Observe that ∇F∇ = 0 (this is the Bianchi identity).

Let P ∈ (Su∗n)U(n) be a polynomial on skew-hermitian matrices invariant under con-
jugation. Then for any hermitian vector space V one gets a well defined polynomial
P : EndV → R. In particular, PF∇ is a well defined 2d-form on M , where d is the de-
gree of P .

Proposition. i. PF∇ is closed.

ii. The cohomology class of PF∇ is independent of ∇.

Proof. i. Let x ∈M and e1, . . . , en be a basis for E around x such that ∇ei(x) = 0. Write
F∇ = F j

i e
i⊗ ej with F j

i ∈ Ω2(M,R). Then the Bianchi identity implies that dF j
i (x) = 0

and therefore dPF∇(x) = 0.

ii. Let ∇′ be a different connection. Pullback E to a vector bundle on M × I. We may
define a connection on this bundle by ∇t = (1−t)∇+t∇′+dt. This interpolates between
∇ and ∇′. Then if i0, i1 : M →M × I are the inclusions at time 0 and 1, we have

[PF∇] = i∗0[PF∇t ] = i∗1[PF∇t ] = [PF∇′ ]

As a consequence of the above results, we see that [PF∇] gives a well defined characteristic
class on n-dimensional bundles. In fact, what one has is a morphism

(Su∗n)U(n) → H∗(BU(n),R)

called the Chern-Weil map.

Theorem. The Chern-Weil map is an isomorphism

Proof. We apply the splitting principle:

(Sun∗1 )Sn H∗(BU(1)n,R)Sn

(Su∗n)U(n) H∗(BU(n),R)
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The left upwards map is easily seen to be an isomorphism, and the right upwards map is an
isomorphism by the theory of Chern classes. Then one has to show that the map on top is an
isomorphism. This follows if we show that the Chern-Weil map for n = 1 is an isomorphism.
This is the map

Su∗1 → H∗(BU(1),R)

Here Su∗1 is a polynomial algebra generated by an element p such that p(i) = 1, and
H∗(BU(1),R) is a polynomial algebra generated by c1. This map respects degree, and
by looking for example at the case of TS2 one may see that p is mapped to −2πc1. It follows
that it is an isomorphism, as we wanted.

The theorem shows that all characteristic classes may be obtained via the Chern-Weil
construction. In particular, tracing isomorphisms one may show that the Chern character is
given by

ch(E) =

[
tr exp

iF∇
2π

]
which is the de Rham cocycle expression we were looking for

Connections and Twisted K-Theory

We now recall the construction of twisted K-theory via bundle gerbes and prove some pre-
liminary results which will be used to construct the twisted Chern character.

Let M be a manifold and M0 → M be a submersion (for example, an open cover). Let
M1 = M0 ×M M0, M2 = M0 ×M M0 ×M M0, etc. Then the spaces Mi form a simplicial
manifold

. . .M2
→→→M1 ⇒M0

which should be thought of as a model for M . A bundle gerbe is a (Hermitian) line bundle
L→M1 with a multiplication

L01 ⊗ L12 = L02

satisfying a certain compatibility condition on M3 (here by Lij we mean the pullback of L
to M2 via the appropriate face map). Equivalently, it is a line bundle on M1 satisfying the
cocycle condition

L01 ⊗ L12 ⊗ L20 = 1

where 1 is the trivial bundle.

Claim. There exists a connection ∇ on L such that the multiplication map is flat.

Proof. Take any connection ∇ on L. It induces a connection δ∇ on L01 ⊗ L12 ⊗ L20. This
bundle also has the trivial connection d. Let Γ = δ∇ − d ∈ Ω1(M2, iR). Observe that the
spaces Ω1(Mi, iR) belong to a (Čech) complex

Ω1(M0, iR)
δ−→ Ω1(M1, iR)

δ−→ Ω1(M2, iR)
δ−→ . . .

which is acyclic since it computes the cohomology of the sheaf Ω1
M ⊗ iR. Now, it may be

seen that Γ is closed so one may write Γ = δα with α ∈ Ω1(M1, iR). Then ∇ − α is a
multiplicative connection.
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From now on fix ∇ multiplicative. Let ω ∈ Ω2(M1,R) be its curvature normalized so that
it represents the first Chern class. The fact that ∇ is multiplicative implies that δω = 0,
and so one may find ν ∈ Ω2(M0,R) such that ω = δν. Then

δdν = dδν = dω = 0

and so dν descends to a closed 3-form η on M . Its cohomology class is the Dixmier-Douady
invariant of the gerbe. The twisted de Rham complex is then defined to be the complex

(Ω∗(M)[[β]], d− βη∧)

where β is a formal variable of degree −2.

Construction of the twisted Chern character

We now give the explicit construction of the twisted Chern character in the de Rham model.
We shall assume for simplicity that the Dixmier-Douady class is torsion. In that case one
may represent any element of twisted K-theory by a bundle gerbe module: this is a (Her-
mitian) vector bundle E →M0 together with a multiplication L⊗ E0 = E1 satisfying some
compatibility condition on M2.

By using the same kind of arguments that we used before, one may take a connection
∇ on E such that the multiplication is flat. Let F be its curvature. Then ω Id +F0 = F1

and therefore ν0 Id +F0 = ν1 Id +F1. This means that ν Id +F ∈ Ω2(M0,EndE) descends
to M (here it is worth noting that although E is not defined on M , the bundle EndE does
descend to a bundle on M). One may therefore give the following

Definition. The twisted Chern character is τch(E) = [tr exp(β(ν Id +F ))].

Observe that we have

(d−βη∧) tr exp(β(ν Id +F )) = tr(β(dν Id +∇F ) exp(β(ν Id +F )))−βη∧tr exp(ν Id +F ) = 0

and so the twisted Chern character defines a class in twisted cohomology, as expected.

Equivariant Chern Character

We now move on to equivariant K-theory and its corresponding Chern character. Let G be a
compact Lie group acting on a space X. There is a naive equivariant Chern character which
we may define in the following way

KG(X,Q)→ KG(X × EG,Q) = K(X//G,Q) = Heven/odd(X//G,Q) = H
even/odd
G (X,Q)

(here X//G = (X ×EG)/G is the homotopy quotient of X by G). However the first map is
not in general an isomorphism. One reason why it should not be an isomorphism in general
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is that one expects the K-theory of a (connected) CW-complex Y to be complete: if we
define I ⊆ K0(Y ) to be the kernel of the rank morphism Y → Z then one expects

K0(Y ) = lim←−K
0(Y )/IN

by looking at the filtration by skeleta. This in particular applies to Y = X//G, so
K(X//G,Q) should be complete. But KG(X,Q) is not complete in general, for example
when X is just a point.

It turns out that completeness is the only obstruction for the above map to be an iso-
morphism

Theorem (Atiyah-Segal completion theorem). K∗(X//G) is the completion of KG(X) at
the ideal I = ker rank ⊆ RG of the representation ring of G.

Example: Take G = S1 and X = pt. Then K0
G(X) = RG = Z[L±]. Moreover,

K0(X//G) = K0(BS1) = K0(CP∞) = lim
←
K0(CPn) = Z[[L− 1]]

as predicted by the completion theorem.

Observe that the complexified representation ring RG ⊗ C is the ring of class functions,
that is, functions on GC//GC. Then I becomes the ideal defining the conjugacy class of 1.
The natural question that we need to answer if we want to understand KG(X) globally is
then: what are its completions at the other conjugacy classes? It turns out that there is a
sequence of Chern characters, one for each conjugacy class, which together give a complete
description of KG(X). We shall use the de Rham model to define them.

Equivariant Chern-Weil theory

From now on we let M be a manifold acted on by the group G and E →M be an (Hermitian)
equivariant vector bundle. There is a de Rham model for equivariant cohomology called the
Cartan model. This is a complex

((S∗g∗ ⊗ Ω∗M)G, d+ ι)

where g∗ has degree 2 and Ω1M has degree 1. This arises as the total complex a certain
bicomplex

(Spg∗ ⊗ ΩqM)G (Spg∗ ⊗ Ωq+1M)G

(Sp+1g∗ ⊗ Ωq−1M)G (Sp+1g∗ ⊗ ΩqM)G

d

ι ι

d

Here the horizontal arrows are induced by the de Rham differential on M , and the vertical
arrows are induced by the maps Ω∗M → g∗ ⊗ Ω∗−1M given by ω 7→ ξaιξaω, where ξa is a
basis for g.
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More generally, if we have a G invariant connection ∇ on E there is a curved complex
(S∗g∗ ⊗ Ω∗(M,E))G,∇G), where ∇G = ∇ + ι is the total differential of the corresponding
(curved) bicomplex. Then (∇G)2 defines an equivariant 2-form FG with values in EndE,
that is,

FG ∈ (g∗ ⊗ Γ(EndE))G ⊕ (Ω2(M,EndE))G

This is called the (equivariant) curvature of the connection. The naive Chern character may
then be computed in this context as

ch(E) =

[
tr exp

iFG

2π

]
Global equivariant Chern character

We are now ready to define the Chern character for other conjugacy classes

Theorem. Let [g] be a semisimple conjugacy class. Then the completion of K∗G(M,C) at

[g] is equal to H
even/odd
Z(g) (M g,C) where Z(g) is the centralizer of g and M g is the subset fixed

by the minimally topologically cyclic subgroup of G whose complexification contains [g]. The
isomorphism maps the class of an equivariant bundle E to[

tr g exp
iFG

2π

∣∣∣∣
Mg

]
Observe that if g = 1 we recover the naive Chern character and the statement of Atiyah-

Segal. In the case of G a finite group and M = pt, we get a chain of equalities

RG ⊗ C = K0
G(pt,C) =

∏
[g]

K0
G(pt,C)∧[g] =

∏
[g]

H
even/odd
Z(g) (pt,C) =

∏
[g]

C

The resulting isomorphism RG ⊗ C =
∏

[g] C is the usual isomorphism given by the
character of a representation.
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