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In this talk we will explore the idea that an algebra A over a field (ring, spectrum) k can
be thought of as a way of encoding a category, namely A -mod its category of modules. And
anything reasonable we define starting from the algebra (such as Hochschild homology or
cohomology) should be defineable just in terms of the category, independent of the presenta-
tion. We say two algebras are Morita equivalent if their categories of modules are equivalent.
One classical point of view is that Morita theory (and noncommutative geometry) study al-
gebras up to Morita equivalence. In this talk we will take a slightly more modern point of
view, and say that the main object of study is categories, which may or may not come from
an algebra. Our end goal is to say what it means to take the Hochschild homology and
cohomology of a category.

Before going on, we should say what we mean by category. Everything will be as ho-
motopical (derived) as possible, so we will be working with dg-categories over k (or stable
categories tensored over k if k is a spectrum, which is needed if one wishes to talk about
topological Hochschild homology). So when we say A -mod we mean what is classically
called the unbounded derived category of A-modules. Now there is a choice in this subject
of whether one wants to work with big categories which have all colimits, or small categories
which have small colimits and are idempotent complete. The former is a bit more general
than the later, and the two are equivalent if one restricts to compactly generated categories
and proper maps. Below we will work in the first context, so for us all categories will be
presentable k-linear and cocomplete, unless we say otherwise. The condition of being co-
complete may look like a technical assumption, but it is in reality this what is capturing
the Morita invariance. If one has an algebra A one may always form a category BAop with
one object with endomorphisms Aop. This is not cocomplete, but its free cocompletion is
A -mod. So the condition of being cocomplete forces us to collapse Morita equivalence classes
of algebras.

Compact generators

The first question we want to answer is, when does a category C come from an algebra, i.e,
when is C = A -mod for some A. The key observation is that A -mod is freely generated
under colimits by one object (namely, A), whose endomorphism algebra is Aop. Therefore if
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C is to be equivalent to A -mod, it has to have an object with those properties. We capture
this in the following definition

Definition. An object x ∈ C is said to be

• compact if Hom(x,−) is continuous, that is, it preserves colimits (equivalently, it pre-
serves infinite direct sums).

• a generator if Hom(x,−) is conservative, that is, Hom(x, y) = 0 if and only if y = 0.

Observe that A is a compact generator of A -mod, because Hom(A,−) is the forgetful
functor from A -mod to k -mod = Vect. Moreover, An is also a compact generator. The
compact objects in A -mod form the smallest subcategory of A -mod closed under finite
colimits and retracts. In other words, they are retracts of finite complexes built out of copies
of A. These are called perfect complexes over A. For A = k, perfect complexes are finite
complexes of finite dimensional vector spaces (i.e, finite sums of shifts of k), which also
happen to be generators of k -mod = Vect.

One key result of Morita theory is the following

Theorem. If x ∈ C is a compact generator of C, then C = A -mod for A = End(x)op. The
equivalence is given by y 7→ Hom(x, y).

Proof. By formal reasons, the functor Hom(x,−) has a left adjoint, which we denote by
x⊗A −. It is determined by the fact that it distributes over colimits, and x⊗A A = x. We
first show this is fully faithful. Take two A-modules M,N , and write them as colimits of
copies of A:

M = colimI A

N = colimJ A

Then we have

Hom(x⊗A M,x⊗A N) = Hom(colimI x, colimJ x)

= limIop Hom(x, colimJ x)

= limIop colimJ Hom(x, x)

= limIop colimJ Hom(A,A)

= limIop Hom(A, colimJ A)

= Hom(M,N)

where we used the compactness of x to commute a Hom and a colimit.
Now we show that tensoring with x is surjective. Take y ∈ C. By tensor-Hom adjunction

we have a map
x⊗A Hom(x, y)→ y

which we claim is an isomorphism. Since x is a generator, one only needs to show that

Hom(x, x⊗A Hom(x, y))→ Hom(x, y)
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is an isomorphism. But the first object is

Hom(x⊗A A, x⊗A Hom(x, y)) = Hom(A,Hom(x, y)) = Hom(x, y)

We leave it to the reader to verify that the above arrow is the identity of Hom(x, y), which
finishes the proof.

Example: Let C = k -mod = Vect. We already identified all the compact generators of Vect,
which happen to be the perfect modules. Therefore we conclude that Vect is equivalent to
modules over End(V )op = End(V ∗) for any perfect V . In particular when V = kn we recover
the well known equivalence k -mod = Mn -mod for Mn the matrix algebra.

We’ll now see two (related) ways of think about this Morita equivalence. Let [n] =
Spec(kn) be a set with n-points, and consider p : [n]→ pt the projection to a point. Starting
from this we can build a groupoid acting on [n] by taking sucessive fiber products:

[n] ⇔ [n]×pt [n]←←← [n]×pt [n]×pt [n] . . .

Concretely, the objects of this groupoid are the n-points, and there is one isomorphism
for every pair of points. By the way it was constructed, this is equivalent to the trivial
groupoid pt. Now we linearize this, that is, we take groupoid algebras. The groupoid
algebra of the above groupoid is Mn. And the groupoid algebra of pt is k. So the Morita
equivalence between matrix algebras and k can be thought of as a noncommutative version
of the mentioned equivalence of groupoids. This gives further motivation for why we want
to work Morita invariantly: this is a noncommutative version of requiring that whatever we
say about a strict groupoid is invariant under equivalence.

The second and related point of view on this is about descent for the map p. Observe
that Mn contains a copy of the algebra kn, so in particular

QCoh(pt) = k -mod = Mn -mod ↪→ kn -mod = QCoh([n])

The above composition is given by pullback along p. Now if we start with a sheaf on [n],
showing that it descends to a sheaf on pt amounts to enhancing the kn-module structure to
an Mn-module structure. In that sense, our Morita equivalence can be seen as telling us the
descent data for p. In the language of monads, we have a monad p∗p∗ acting on QCoh([n]).
This is the same as an algebra on kn-bimodules, the algebra being given by p∗p∗k

n. This
can be computed to be Mn by the following base change diagram:

[n]×pt [n] [n]

[n] pt

p

p

So our second point of view on Morita equivalences is that they are descent statements
in noncommutative geometry. In fact our theorem that compact generators induce Morita
equivalences can be gotten as a corollary of the Barr-Beck-Lurie’s monadicity theorem, which
is a common ingredient in the proof of descent statements.
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Example: Now we’ll start with a descent situation and get a Morita equivalence out of it.
Consider S1 as a group in homotopy types, and consider the projection

pt
p−→ BS1

Since these are homotopy types, the sheaf theory to consider in this example is local systems.
There are two variants of the category of local systems on a given homotopy type X. One
may consider local systems with possibly infinite dimensional fibers. We denote this category
by LocSys(X). Or one may consider the ind-completion of the category of local systems
with finite dimensional fibers. We denote this by LocSys′(X). These are the limit and
the colimit of Vect over X. It’s not hard to show that LocSys(X) is dual to LocSys′(X).
These are the homotopy-theory version of the categories QCoh and IndCoh from derived
algebraic geometry. They are in general different, and have different functoriality. For a
map f : X → Y , we have adjoint pairs of continuous functors (f!, f

∗) for LocSys and (f ∗, f∗)
for LocSys′. These satisfy base change, and for f : X → pt the projection, one has that f!

and f∗ take homology and cohomology, respectively.
Let’s consider first the category LocSys(BS1). Consider inside it the object p!(kpt). Since

p! has a continuous right adjoint, it is proper, so p! is compact. By adjunction, Hom(p!,−)
takes the fiber at the special point, and since BS1 is connected this is conservative. Hence

LocSys(BS1) = Hom(p!k, p!k)op -mod = (p∗p!k)op -mod

By base change, this is computed to be the homology of the circle, with the algebra structure
coming from convolution. This is just a free commutative algebra on a generator λ of
cohomological degree −1. It is commutative so we can forget the oppossite. Therefore we
have the statement

LocSys(BS1) = H•(S1) -mod = k[λ] -mod

Which is the statement of descent for p, and can be seen as arising from the monad p∗p!.
Now consider the local system kBS1 which is a compact object in LocSys′(BS1). It is a

generator since BS1 is simply connected, so taking global sections is conservative. Therefore
we see

LocSys′(BS1) = Hom(kBS1 , kBS1)op -mod

That algebra is H •(BS1) = k[u] for u of cohomological degree 2. It is commutative so again
equivalent to its opposite. We therefore get the statement

LocSys′(BS1) = H
•
(BS1) -mod = k[u] -mod

This can be thought of as saying that BS1 is affine, and can be seen as arising from the
monad π∗π

∗ where π is the projection BS1 → pt.
Putting everything together, we get a relationship between modules over k[λ] and k[u].

The most straightforward thing to say is that

k[λ] -modperf/k = k[u] -modperf
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where on the left we have k[λ] modules which are perfect as k-modules, and on the right
we have perfect k[u]-modules. This is a case of Koszul duality. Since S1 and BS1 are
abelian groups, we can expect there to be a Fourier dual side to the above story. It exists,
and happens to be a story about descent in formal derived algebraic geometry. What one
considers is the map

i : pt→ Spec k[λ]

The (i∗, i
!) adjuction at the level of IndCoh is monadic, so we have that that

IndCoh(k[λ]) = ωpt×Spec k[λ] pt -mod = k[u] -mod

(equivalently, this comes from looking at the compact generator i∗k). On the other hand,
Spec k[λ] is obviously affine, so QCoh(Spec k[λ]) = k[λ] -mod. Fourier duality interchanges
functions and distributions. In this case, this reads

QCoh(Spec k[λ]) = LocSys(BS1)

and
IndCoh(Spec k[λ]) = LocSys′(BS1)

The difference we mentioned before between the two categories of local systems is, on
the algebraic geometric side, the difference between perfect sheaves and coherent sheaves.
This is measured (in the case of quasi-smooth schemes) by the theory of matrix factor-
izations/singular support (which can be seen as an application of the calculation of the
Hochschild cohomology of the category of coherent sheaves on a scheme).

Bimodules

Let A,B be two algebras. We are interested in continuous (i.e, colimit preserving) functors
F : A -mod → B -mod. Since A -mod is the free cocompletion of BAop, we see that F
determined from the data of F (A), which is an object of B -mod with an Aop action. This
is an B − A-bimodule. One can then recover F from the bimodule as F (x) = F (A) ⊗A x.
This proves the following

Theorem. Functcont(A -mod, B -mod) = B − A−bimod

An important particular case of this is when A = B. Then we see that endofunctors of
A -mod consist of A − A-bimodules. The diagonal bimodule A corresponds to the identity
endofunctor.

Example: The Morita equivalence Mn -mod = k -mod comes from tensoring with the k −
Mn-bimodule kn

Example: The Koszul duality between k[λ] and k[u] comes from tensoring with the k[λ]−
k[u]-bimodule k. Here the bimodule structure is not the trivial one, and arises from the joint
actions of H•(S1) and H •(BS1) on H •(pt).
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Hochschild cohomology

Recall that given an algebra A, its Hochschild cohomology (with values in the diagonal
bimodule) is HH•(A) = HomA−A(A,A). By the observations from the previous sections, this
coincides with HomEnd(A -mod)(id, id). This is manifestly Morita invariant: it only depends
on A -mod. We can now implement this definition for an arbitrary dg category

Definition. Let C be a dg category. Its Hochschild cohomology (or center) is

HH
•
(C) = HomEnd(C)(id, id)

Informally, a cocycle in HH•(C) (i.e, a natural transformation from the identity to itself)
is the data of an endomorphism αx : x → x for every object x ∈ C, together with the data
of commutativity αyf = fαx for every arrow f : x → y, plus higher compatibilities for
sequences of composable arrows. More formally, this means that the Hochschild cohomology
can be computed as the totalization of a certain cosimplicial object∏
x∈C

Hom(x, x) ⇒
∏
x,y∈C

Hom(Hom(x, y),Hom(x, y))→→→
∏

x,y,z∈C

Hom(Hom(x, y)⊗Hom(y, z),Hom(x, z)) . . .

Here the first two arrows are, as we said before, pre and post-composition with the natural
transformation, which have to be equalized by the Hochschild cohomology. This construction
is an example of categorical end, and inmediately suggests a possible approach for discussing
Hochschild homology, via the dual construction (a coend). Observe that if we allowed our-
selves to consider the above complex for the category BAop, we would arrive at the usual
complex computing the Hochschild cohomology of A. So the above diagram may be though
of as a many object version of that (the relevant observation is that for A -mod, the whole
center is determined only by what happens on BAop, so the above construction will give the
same result as the classical thing one does for an algebra).

Now let’s explore a few structures that one has on Hochschild cohomology, from this
point of view.

• Cup product: this is just the algebra structure on HH•(C) arising from the fact that it
is the endomorphisms of an object in a dg category.

• E2-structure: informally, this structure is the data of an identification αβ = βα for
every pair of cocycles α, β ∈ HH•(C). We can see this at two levels. Objectwise,
αxβx = βxαx by applying the fact that α is in the center, so it commutes with all
endomorphisms. Another way of thinking about this is that the E2 structure arises
from a manipulation of 2-cells in the category of categories, as follows:
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• Action on Hochschild homology. Before we define Hochschild homology, let’s indicate
why it should be acted on by HH•. Observe that by definition HH• C maps to endo-
morphisms of any object of C. But we can do better: it naturally acts on Hom(x, y)
for any pair of objects x, y, by pre- or post-composition. Therefore the category C is
automatically enriched in HH•(C)-modules. Since Hochschild cohomology is E2, we can
use some commutative intuition to think about it: we can think that C is a category
living over Spec(HH• C) (i.e., a sheaf of categories). Morally, the fiber of C over any
point of Spec(HH• C) will be a category with trivial center, so this splits the problem
of understanding C into a commutative problem, and a fully noncommutative one.

The action of HH• C on Hochschild homology will be an obvious consequence of the
action of HH• C on Hom-spaces, together with the fact that Hochschild homology is
built out of the Hom-spaces.

Hochschild Homology as a coend

We’ll discuss two points of view on Hochschild homology. The first one is as a dual construc-
tion to the presentation of Hochschild cohomology. We define, for a compactly generated
category C, its Hochschild homology to be the geometric realization of the following simplicial
object⊕
x∈Cc

Hom(x, x) ⇔
⊕
x,y∈Cc

Hom(x, y)⊗Hom(y, x)←←←
⊕

x,y,z∈Cc
Hom(x, y)⊗Hom(y, z)⊗Hom(z, x) · · ·

Here the arrows are pairwise compositions. Observe that we are only taking compact objects
into account. For Hochschild cohomology this didn’t matter, having an endomorphism of the
identity endofunctor of Cc is the same as having an endomorphism of the identity endofunctor
of C (when C is compactly generated), but for Hochschild homology if we allowed noncompact
objects we would get zero (essentially by the same reasons that the K-theory of such a
category vanishes: for instance for Vect one has equations like k ⊕ V = V for V infinite
dimensional, which would show that the class of k is zero).

Observe that if we allowed ourself to work with the category BAop for A an algebra, then
the above construction would recover the usual bar complex computing Hochschild homology
of A. We can therefore think of the above as being a many object version of the bar complex.

By construction, if we have an endomorphism f of a compact object x, we get a class
tr(f) ∈ HH• C called the trace of f . Moreover, looking at the 1-simplices in the above diagram
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tells us that if we have f : x→ y and g : y → x then tr(fg) = tr(gf), which is a reasonable
property to expect from a trace. We therefore think of Hochschild homology as being the
universal recipient for traces of endomorphisms.

Given a compact object x, we can always take our endomorphism to be the identity
idx. In this case we denote tr(idx) = ch(x), and we call this the character of x. This is
a general construction which recovers in special cases many things that we call characters:
Chern character, character of a group representation, Dennis trace, etc.

Example: When C = Vect = k -mod the Hochschild homology is k. In this case, the trace
of an endomorphism coincides with the usual notion of trace, and in particular the character
of a perfect complex V coincides with its dimension (i.e, Euler characteristic).

The Hochschild cohomology is k as well. In this case the enrichement that we mention
in the previous section is not interesting, it’s just telling us that morphisms between vector
spaces are themselves vector spaces.

One advantage of this point of view on Hochschild homology is that it makes evident its
functoriality. If F : C → D is a proper map (by which we mean it maps compact objects in C
to compact objects in D), then we get a map between the corresponding simplicial objects,
and passing to geometric realization we get a map F∗ : HH•(C)→ HH•(D). By construction,
this obviously commutes with taking characters, so we get the following

Theorem. For F : C → D proper, and x ∈ C compact, we have ch(F (x)) = F∗ ch(x).

This is a noncommutative version of the Riemann-Roch theorem: if one takes C,D to
be coherent sheaves on two varieties X, Y , and F to be the pushforward along a proper
map f : X → Y , then (after some work) one recovers from this the usual statement of
Riemann-Roch.

Example: Let’s allow ourselves to step outside the k-linear context for a moment, to get
some more intuition as to what the above simplicial object is computing. Let’s take G a
group, and C = BG be a strict category with one object and endomorphisms G. Then, in
this context, replacing direct sums with coproducts and tensor products with products, the
simplicial object becomes

G⇔ G×G←←← G×G×G . . .

Here the arrows are pairwise multiplication. Looking at the 1-simplices, this is telling us
that we have to identify gh with hg, for every pair of elements g, h in G. This is the same
as identifying g with hgh−1. In fact, the geometric realization is the adjoint quotient G/G,
which is the loop space of BG.

The moral of this is that we may think about our definition of HH•(C) for a k-linear
category to be a way of implementing loop spaces in noncommutative geometry. The func-
toriality, from this point of view, is simply pushforward of loops. For categories arising
as sheaves on some geometric space, the analogy is even stronger in that the Hochschild
homology can usually be shown to be functions on the loop space of the given object.
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Hochschild Homology as the dimension of C
We now turn to our second point of view on Hochschild homology. We will argue that it
can be considered as the dimension of C. The notion of dimension is something that makes
sense in general for any dualizable object in a symmetric monoidal category. In our case,
the category we are interested in is the category DGCatcont of k-linear cocomplete categories
and continuous functors. It has a monoidal structure ⊗. This means, given C, D two
categories, we may form their tensor product C ⊗ D. This is a new category generated by
objects of the form c ⊗ d with c ∈ C and d ∈ D, with some evident relations so that the

functor C ×D ⊗−→ C ⊗D is continuous in each variable. For our purposes, it will be useful to
know that A -mod⊗B -mod = (A⊗ B) -mod, so we can think of ⊗ as being a many object
generalization of the tensor product of algebras.

One analogy to keep in mind in what follows is that (DGCat,⊗) is a categorified version of
(Vect,⊗). If one replaces categories by vector spaces, our definition of Hochschild homology
will recover the dimension of a vector space.

One first observation is that in vector spaces we are not allowed to take dimension of
any object, only of finite dimensional ones. In our context, we will restrict to dualizable
categories: categories C for which there is another category C∨ (which will happen to be
Funct(C,Vect)) together with maps

Vect
coev−−→ C ⊗ C∨

C∨ ⊗ C ev−→ Vect

called evaluation and coevaluation, satisfying some standard properties coming from the
geometry of 1-dimensional cobordisms. Namely, one requires that the following compositions
can be identified with the identities:

C id⊗coev−−−−→ C ⊗ C∨ ⊗ C ev⊗id−−−→ C

C∨ coev⊗id−−−−→ C∨ ⊗ C ⊗ C∨ id⊗ev−−−→ C∨

Most categories one encounters in practice are dualizable. In particular those which are
compactly generated, in which case the dual is found as the ind-completion of the opposite
of the category of compact objects. A very particular case of this is that for A an algebra,
A -mod and Aop -mod are dual, the unit and counit being given by the bimodules A⊗AopAk

and kAA⊗Aop.
For a dualizable category one may identify C⊗C∨ with Hom(C, C) and then the coevalua-

tion is determined by the fact that it maps k to idC. Moreover, we think about the evaluation
as taking trace of an endofunctor. Therefore, a reasonable definition of dimension of C is
obtained by composing the evaluation and coevaluation (the braiding makes their source and
target agree).

Definition. The Hochschild homology of C is the image of k under the composition

Vect
coev−−→ C ⊗ C∨ = C∨ ⊗ C ev−→ Vect
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For example, when C = A -mod, composition arises from tensoring bimodules, so

HH•A -mod = A⊗A⊗Aop A

which agrees with the classical definition.
It may be proven that this definition of Hochschild homology agrees with our previous

approach through coends. The proof involves some standard manipulations with ends and
coends, which we won’t discuss.

To finish we will see that this definition of Hochschild homology is not only conceptually
useful, but can lead to concrete computations in a straightforward way, at least for categories
of sheaves on a geometric object X. In that context, one usually finds that the dual of C is
C itself, the tensor product C ⊗ C∨ is sheaves on X ×X, and the unit and counit have to do
with taking the structure sheaf of the diagonal, and integrating (taking pushforward) along
the diagonal.

Example: Let’s first discuss the decategorified version of that idea. Consider the vector
space kn. We will compute its dimension by following the above philosophy. Let [n] =
Spec kn. The relevant geometric diagram is

[n] pt

[n] [n]× [n]

pt

∆

p

p

∆

The claim is that (kn)∨ = kn. To show this one must construct maps

k → kn ⊗ kn

kn ⊗ kn → k

We think of k as being functions on a point, and kn ⊗ kn as being functions on [n] × [n].
Then we find our unit and counit by doing push-pull along the diagram

k
∆∗p∗−−−→ kn ⊗ kn

kn ⊗ kn p∗∆∗
−−−→ k

The composition is p∗∆
∗∆∗p

∗. The standard way to compute this is via a base change
diagram:

[n] [n]

[n] [n]× [n]

id

id ∆

∆
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Then the composition just becomes

k
p∗ id∗ id∗ p∗−−−−−−→ k

which is just

k
p∗p∗−−→ k

This maps 1 to the integral of the constant function 1 along [n]. This shows that the
dimension of kn is n.

One thing we didn’t do is to show that our unit and counit satisfy the required axioms.
This is in general straightforward and involves some more base change diagrams which we
leave for the reader to write down.

Example: As an example of the above strategy at work in the categorified context, let’s
take C = Rep(G) for G a finite group (although this is really general and we could take G
to be a group in homotopy types or even an algebraic group).

Then C is also LocSys(BG), which is a sheaf theory evaluated on a space, so we expect
C∨ = C. The unit and counit should come from doing push pull along the diagram

BG pt

BG BG×BG

pt

∆

p

p

∆

Namely, one proves that C ⊗ C = LocSys(BG×BG), and then the unit and counits are

Vect
∆!p

∗
−−→ LocSys(BG×BG)

LocSys(BG×BG)
p!∆

∗
−−→ Vect

At the level of group representations, the unit sends k to the induction of the trivial
representation of G to G×G, and the counit is restriction from G×G to G composed with
taking coinvariants. In other words, the Hochschild homology of RepG is

Ind1
G ResGG×G IndG×G

G ResG1 (k)

The way one gets a handle on this is by looking at the base change diagram

G/G BG

BG BG×BG

q

q ∆

∆
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where G/G is the loopspace of BG, i.e., the adjoint quotient. Then the Hochschild homology
of C becomes the homology of the constant local system kG/G, which agrees with the homology
of G/G.

When k is a field of characteristic not dividing the cardinality of G, there is no interesting
group homology at play here, and the Hochschild homology becomes k[G/G], the space of
class functions (concentrated in degree zero). For V a finite dimensional representation of G,
its class in HH•(Rep(G)) coincides with the usual notion of character from the representation
theory of finite groups.

As for Hochschild cohomology, we can compute it by observing that End(C) = C∨ ⊗ C,
and the identity corresponds to the image of k under the unit map. So we have

HH
•
RepG = Hom(∆!kBG,∆!kBG) = Hom(kBG,∆

∗∆!kBG) = Hom(kBG, q!kG/G)

Again, when the characteristic of k does not divide the cardinality of G, there is no group
homology to worry about, and we see

HH
•
RepG = k[G/G]

Note that we already knew that HH0 RepG had to be k[G/G] since RepG = k[G] -mod and
the center of the group algebra is k[G/G]. But now we are able to conclude that the higher
cohomologies vanish.
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