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Let X be a smooth scheme over C. We have two categories of interest: DMod(X), the
category of D-Modules on X, and Sh(X) the category of sheaves of complex vector spaces on
the analytic space underlying X. The goal of this talk is to establish an equivalence between
appropriate subcategories of these. Morally, if we think of a D-module as a sheaf with a flat
connection, we want to assign to it its sheaf of flat analytic sections.

One shouldn’t expect this to give an equivalence without restricting what sheaves one
considers: the category of D-modules knows information about the complex structure on
X, while the category of sheaves only knows about the topology. Moreover, the category of
sheaves is very non algebraic - it doesn’t contain nontrivial compact objects, while DMod(X)
is compactly generated.

The correspondence has a better chance of working when one restricts to D-modules
which are close to flat vector bundles. It is a classical result that taking flat sections of a
complex analytic vector bundle with a flat connection gives an equivalence

Conn(Xan) = LocSys(X)

with the category of local systems on X. This isn’t true for algebraic flat vector bundles.
For example, consider the following two connections on OA1 :

∇1(f) = d f

∇2(f) = d f − f d z

These are equivalent as analytic connections, via the change of gauge given by multiplication
by ez. They both have the same sheaf of flat sections, namely the constant sheaf. However
they are not equivalent as algebraic connections, since ∇1 has a flat algebraic section while
∇2 doesn’t. The problem here is that ∇2 is a non-regular connection. In other words, the
ordinary differential equation f ′− f = 0 is not Fuchsian - infinity is an irregular singularity.

It is a theorem of Deligne that when one restricts to regular algebraic connections, one
has the equivalence

Connreg(X) = LocSys(X)

We want to go a bit further than this. We will work with holonomic D-modules, which
are basically D-modules for which there is a stratification so that their restriction to each
strata is a connection. On the topological side, we want to allow our local systems to differ
between different strata - this is called a constructible sheaf. One expects then to have an
equivalence

DModrh(X) = Shc(X)
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between the categories of regular holonomic D-modules on X, and constructible sheaves on
X. This is the Riemann-Hilbert correspondence, proven by Kashiwara in the context of
complex manifolds and by Beilinson and Bernstein for smooth varieties.

Functoriality

We begin by discussing the different functors that we have on the side of D-modules. Every-
thing will in principle be defined at the level of DMod(X), the (unbounded derived) category
of quasicoherent D-modules. In some cases we will be able to restrict to its subcategory of
compact objects, DModcoh(X).

Recall that we can think of D-modules as either left or right D-modules. The way we go
from one description to the other is by tensoring with the dualizing sheaf ωX . It is in general
more convenient to think about them as right D-modules, and the underlying OX-module
as being an ind-coherent sheaf on X. Our notation follows the conventions of [1] and [2].

Given a map f : X → Y , we can define a pullback f ! : DMod(Y )→ DMod(X). In terms
of left D-modules, this is the ordinary pullback of the underlying quasicoherent sheaf, with
its natural DX action. In terms of right D-modules, this becomes the !-pullback at the level
of the underlying ind-coherent sheaves, with its natural right DX-module structure.

We can also define a pushforward f∗ : DMod(X) → DMod(Y ). As usual, functors be-
tween categories of modules can be presented by bimodules, and this isn’t the exception.
One can define the transfer bimodule DX→Y to be the pullback of DY over f , as a quasi-
coherent sheaf. This is a DX − f−1DY -bimodule, and one can define the pushforward of a
right DX-module M to be the sheaf theoretic pushforward of M⊗DX

DX→Y , with its natural
right DY -module structure.

We have a monoidal structure on DMod(X), given by tensoring the underlying OX-
modules. We shall denote it by ⊗!. There is a self-duality on the category DMod(X) given
by

(M,N) = Γdr(M ⊗! N))

where Γdr is the pushforward to the point. At the level of compact objects, this induces the
Verdier duality functor

D : DModcoh(X) = DModcoh(X)op

satisfying Hom(DM,N) = (M,N). Concretely, this is given by the formula

D(M) = HomDX
(M ⊗OX

ω−1X , DX)

for M a right DX-module.
The above defined operations are everything we have in this level of generality. They

satisfy the usual rules, namely one has

• Adjunctions: when f is proper, f∗ is left adjoint to f !. When f is smooth, f∗ is right
adjoint to f ![−2d], for d the relative dimension.

• Base change for f∗ and f !.
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• Projection formula. In other words, f∗ and f ! are dual functors.

• The shriek pullback respects the monoidal structure.

• D2 = id.

We skip the proof of all this. Most proofs are based on two tricks. The first trick is
to split the map f into the composition of an immersion plus a projection from a product.
The first case looks like the inclusion of a coordinate plane inside An. The second one can
be reduced to projection from projective space. Then one can understand these two cases
separately. The second trick that one may rely on to prove some of these identities is to
prove it on generators of our category, which when working on an affine scheme can be taken
to be just the ring D itself. See [3] for details. Another route is to get everything as a
particular case of the general machinery of ind-coherent sheaves on inf-schemes, as in [2].

Some computations

We now do some examples which show how to compute the functors mentioned in the
previous section.

Consider first the inclusion i : A1 → A2 of the affine line into the x-axis. Then the transfer
module DA1→A2 is equal to DA1 ⊗ C[∂y] as a DA1-module. In terms of left D-modules, this
implies

i∗OA1 = lim−→OA2/yn[−1] = C[∂y]⊗ C[x][−1]

As expected, the effect of the pushforward is to formally extend the module to make ∂y act
(together with a shift which comes from the passage between left and right). Of course one
should expect the result to be different from the structure sheaf of the x-axis, since points
infinitesimally close to the x-axis are supposed to have the same fiber as points lying on the
axis. What we are seeing is a sort of (shifted) structure sheaf of the formal completion of
the x-axis.

Consider now the projection π : X → pt from X an n-dimensional smooth variety to the
point. Then the transfer bimodule DX→pt is simply OX , which has a resolution of the form

DX ⊗OX
ΛnTX → DX ⊗OX

Λn−1TX → . . .→ DX

This can be thought of as a quantized version of the Koszul resolution of the structure sheaf
of the zero section inside the cotangent bundle of X. Therefore one sees that the pushforward
of a (right) D-module M is computed by the global sections of the complex

M ⊗OX
ΛnTX →M ⊗OX

Λn−1TX → . . .→M

In terms of left D-modules, one obtains the de Rham complex of M :

M →M ⊗OX
Ω1
X → . . .→M ⊗OX

Ωn
X

shifted so that the term M is in degree −2n.
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As a particular case, observe that

π∗π
!C = π∗OX = Hdr(X)[2n]

The term π∗π
!C is what we could call the algebraic Borel-Moore homology of X, and the

above computation is what we expect from Poincaré duality.
Finally, let’s compute DωX . This is

HomDX
(OX , DX)

and we can use the previously mentioned resolution of OX to get

DωX = DX → DX ⊗OX
Ω1
X → . . .→ DX ⊗OX

Ωn
X

where the term DX is in degree 0. This coincides with Ωn
X [−n] = ωX [−2n]. Therefore we

see
DωX = ωX [−2n]

again agreeing with Poincaré duality (in fact this might as well be the statement of Poincaré
duality).

More Functoriality

We now want to discuss the functors f ∗ and f!. These are supposed to be left adjoint to f∗
and f !. Since f∗ and f ! are dual functors, it is a general fact that their left adjoints, if they
exist, are given by

f! = Df∗D

and
f ∗ = Df !D

However, in order to be able to do this, one needs f∗ and f ! to preserve coherence, which
doesn’t happen in general: the shriek pullback of DX to a point is an infinite dimensional
vector space, and the shriek pushforward of DX to a point computes cohomology of the
structure sheaf of X, which is also infinite dimensional in general. One may see in fact that
the sought after adjoints don’t exist in those situations.

The situation is better if we restrict to the full subcategory DModh(X) ⊂ DModcoh(X) of
holonomic D-modules. It may be shown that f∗, f

! and D preserve holonomicity. Therefore
when working with holonomic D-modules one has the full six operations formalism.

We may now reinterpret the final computation from the last section as telling us

π∗C = π!C[−2n]

and therefore
π∗π

∗C = π∗π
!C[−2n]
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which is in fact Poincaré duality, if we call the left hand side cohomology and the right
hand side (shifted) Borel-Moore homology. Observe that the left hand side is nothing else
than the algebraic de Rham cohomology of X. We shall see that the Riemann-Hilbert
correspondence is compatible with the functoriality in both categories. This implies for
example that algebraic de Rham cohomology is the same as the cohomology of the underlying
manifold.

Constructible Sheaves

We now want to take a look at the second category involved in the Riemann-Hilbert cor-
respondence. Let X be a smooth variety. To say what a constructible sheaf is, we need to
agree on a notion of stratification of X. We shall use the following: a stratification S is a
decomposition

X =
∐

Xα

into subvarieties of X so that the closure of each stratum is a union of strata. A constructible
sheaf for S is a sheaf F ∈ Sh(X) (the unbounded derived category of sheaves on X, or better
the category of sheaves of Z-module spectra) such that its restriction to each stratum is a
local system (i.e., a locally constant sheaf with finite stalks).

We denote by Shc(X) the category of sheaves constructible for some stratification. It
may be shown that the usual six operations formalism on sheaves restricts well to the con-
structible category, so we have the same functoriality as with D-modules (cf. Chevalley’s
constructibility theorem).

The de Rham functor

We are now ready to introduce the functors relating D-modules to constructible sheaves.
Let M ∈ DModh(X). Define

Sol(M) = HomDan
X

(Man,OanX )

where we take M to be a left module. It may be shown that this belongs to Shc(X): this is
Kashiwara’s constructibility theorem. The resulting functor

Sol : DModh(M)op → Shc(M)

is called the functor of solutions. Its name comes from the fact that if M is associated to
a system of partial differential equations on X, then Sol(M) is the sheaf of solutions of the
system.

We will be interested in a second, covariant functor, given by

DR(M) = Man ⊗Dan
X
OanX
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where we take M to be a right module here. This is called the de Rham functor, and it
is related to the functor of solutions by the identity DR(M) = Sol(DM). In particular,
Kashiwara’s constructibility theorem also applies for this functor, so we have

DR : DModh(X)→ Shc(X)

The way we compute the de Rham functor is by using the previously mention resolution of
OX . We have

DR(M) = Man ⊗Oan
X

ΛnT anX →Man ⊗Oan
X

Λn−1T anX → . . .→Man

where the term Man is in degree 0. In terms of left D-modules, this is the analytic de Rham
complex

DR(M) = Man →Man ⊗Oan
X

Ω1
Xan → . . .→Man ⊗Oan

X
Ωn
Xan

shifted so that the term Man is in degree −2n.
There are two main related problems that make the de Rham functor not be an equiva-

lence:

• Injectivity fails already for connections for the reasons mentioned in the introduction.
Namely,

DR(DA1/(∂z − 1)DA1) = DR(DA1/∂zDA1)

but those are two different DA1-modules.

• DR doesn’t commute with pullbacks or pushforwards.

The notion of regular holonomic D-module is meant to solve these two issues. We do
however have some good behavior for the de Rham functor even before assuming regularity:

• DR commutes with Verdier duality.

• DR commutes with exterior tensor products.

• The singular support of DR(M) coincides with the characteristic variety of M .

• When f is non characteristic, one does have DR f ∗ = f ∗DR. This is the content of the
Cauchy-Kowalevsky-Kashiwara theorem. Morally, the content of this theorem is that
when f is non characteristic with respect to a D-module, then the D-module looks like
a connection in the directions normal to f , so locally to give a flat section one only
needs to give a flat section along f .

• When f is proper, one does have DR f∗ = f∗DR. This is proven by GAGA: we think
of DR f∗M as having to do with algebraic flat sections of M along the fibers of f , and
f∗DRM as having to do with analytic flat sections of M along the fibers. But if the
fibers are proper, then both notions coincide.

This last point indicates that the notion of regular D-module is somehow allowing for a
passage from the analytic world to the algebraic world. We had already seen a hint of this
when we mentioned that Riemann-Hilbert in particular implies that algebraic and analytic
de Rham cohomology agree.
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Regularity

We call M ∈ DModh(X) a regular holonomic D-module if i!M is a regular connection for all
i : C → M smooth curves for which i!M is a connection. There are more concrete criteria
for when a D-module is regular, all having to do with the behavior of connections at infinity.
We refer to [3] for details on this, here we shall content ourselves with stating the properties
that we need to make Riemann Hilbert work:

Theorem. The category DModrh(X) of regular holonomic D-modules on X is stable under
all operations.

More importantly, the following theorem contains the crucial passage from the analytic
to the algebraic world. This solves the two problems mentioned in the previous section.

Theorem. • The functor DR : DModrh(X)→ Shc(X) commutes with all operations.

• (Deligne’s Riemann Hilbert) The de Rham functor gives an equivalence

Connreg(X) = LocSys(X)

between the categories of regular connections on X and local systems on X.

The Riemann-Hilbert Correspondence

We are now ready to state and prove the correspondence (although most of the hard work
actually goes into showing that the notion of regularity satisfies the properties mentioned in
the previous section, so we are cheating a bit here).

Theorem. The functor DR : DModrh(X)→ Shc(X) is an equivalence.

Proof. We first show it is fully faithful. Let M , N be two regular holonomic D-modules. We
have

Hom(M,N) = Γdr(DM ⊗! N) = Γdr(∆
!(DM �N))

The same formalism is present on the constructible side, so we also have

Hom(DR(M),DR(N)) = Γ(∆!(DDR(M) � DR(N)))

The fact that DR commutes with all operations, then implies that

Hom(M,N) = Hom(DR(M),DR(N))

which means that DR is fully faithful.
We now show surjectivity. Let Y ⊂ X be a smooth subvariety. Let L ∈ LocSys(Y ) be a

local system on Y . By Deligne’s Riemann-Hilbert, we may find a connection M on Y such
that

DRY (M) = L
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Then, denoting by iY the inclusion from Y to X, we have

DR(iY ∗M) = iY ∗L

Our theorem then follows from the fact that the sheaves of the form i∗L generate the category
Shc(X). To see this, let F be an arbitrary constructible sheaf, and let j : Z → X be the
inclusion of the smooth locus of the support of F . Then j∗j

∗F is the star extension of a local
system on a smooth subvariety, and the fiber of the map F → j∗j

∗F has support strictly
smaller than the support of F . The result then follows by induction.

Perverse Sheaves

So far our whole discussion happened at the level of derived categories. We now consider
the t-structure on DModrh(X) coming from the forgetful functor from right D-modules to
quasi-coherent sheaves (so that ωX is in degree −n). We also have a t-structure on Shc(X)
which makes sheaves whose stalks are classical vector spaces be in the heart. It turns out
that the de Rham functor is not t-exact. For example, observe that

DR(ωX) = DR(π!C) = π!C = CX [2n]

More abstractly, one can show that Verdier duality preserves the t-structure on D-modules,
but it fails to preserve the t-structure on sheaves (not even up to a shift). Therefore, we may
transport the t-structure on D-modules to get an interesting t-structure on constructible
sheaves, called the perverse t-structure. Its heart is an abelian category Perv(X), whose
objects are called perverse sheaves. They admit the following concrete description

Theorem. A sheaf F is perverse if and only if

• dim suppH−j(F) ≤ j for all j

• dim suppH−j(DF) ≤ j for all j

In terms of stalks, this means that generically the stalks are concentrated in degree −n,
in codimension one they are allowed to concentrate in degrees −n and −n+ 1, etc, until in
codimension n they are allowed to concentrate in degrees −n,−n+ 1, . . . , 0. The picture for
costalks is similar only that they are concentrated in positive degrees instead of negative.

A simple argument considering characteristic cycles on the D-modules side shows that
DModrh(X)♥ = Perv(X) is an Artinian category. Its simple objects are in correspondence
with pairs of a smooth subvariety Y together with an irreducible local system L on Y (where
we identify two such pairs if they agree generically). The corresponding simple D-module is
the unique simple extension of L[dim(Y )], and is denoted by

i!∗L[dim(Y )]

This is called the middle extension of L[dim(Y )], and may be computed by a series of star
extensions and truncations, see [3].
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In our situation we are starting with a shifted local system on Y , so the resulting sheaf is
also called an intersection cohomology sheaf, and denoted ICX(Y, L). It may be shown that

DICX(Y, L) = ICX(Y, L∨)

which is the statement of Poincaré duality for intersection cohomology sheaves. In the
case when Y = X and L is the constant sheaf, one recovers the usual Poincaré duality
D(CX [n]) = CX [n].
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