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The classical Satake correspondence identifies the spherical Hecke algebra of a reductive
group over a local ring with the representation ring of its Langlands dual group. This is
the key piece which allows one to pass between the Galois and automorphic sides of the
Langlands correspondence for function fields. In this talk we will discuss the geometric
Satake correspondence, which plays a similar role in the geometric Langlands program

The Hecke category

Throughout the talk we let X be a smooth projective curve over C and G be a reductive
algebraic group over C (for instance GLn, SLn, PGLn, SOn, SPn, ...).

We are interested in the moduli stack BunG(X) of G-bundles on X. As usual in algebraic
geometry, we may study this space by studying functions that may be defined on it. Now,
there are several things that may be called functions. The first thing that comes to mind is
(sections of) the structure sheafOBunG(X) which we may think of as complex valued functions.
A bit less naively, one may consider the category QCohBunG(X) of quasicoherent sheaves on
BunG(X). If we think about a quasicoherent sheaf as a generalized vector bundle, where we
allow fiber dimensions to jump, then we see that a quasicoherent sheaf may be thought of
as a function which assigns a vector space to each point of BunG(X).

The usual operations with functions have analogues in the world of quasicoherent sheaves:
one may add two quasicoherent sheaves and also multiply (tensor) them. In that way,
QCohBunG(X) has the structure of a symmetric monoidal category, which may be thought of as
a categorification of the notion of a commutative algebra. Moreover, given an (appropriate)
map between two varieties (or stacks), one may pullback and pushforward sheaves, in the
same way that one may pullback functions and integrate functions along fibers. We may call
QCoh a “function theory” since it behaves in a similar way as the usual theory of complex
valued functions.

We are going to go a step further and instead of QCoh BunG(X) we will consider
DMod BunG(X) the category of D-modules on X. We may think of a D-module as a sheaf
with a connection, and in that way it is just a vector space valued function together with
extra structure. In particular, we may perform the operations discussed above, so D-modules
are also a theory of functions.
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Goal: Understand the category DMod BunG(X).
The geometric Langlands equivalence is, as we shall see, an equivalence between this

category and a certain other category.
We first need to make precise what it means to understand DMod BunG(X). It turns

out that there is a family of symmetries of this category, called point modifications, which
depend on a choice of a point in X. Let x ∈ X and let X ′ be the curve X ∪ {x′} consisting
of X with a double point at x. In order to give a G-bundle on X ′ one must give a pair of
bundles on X together with an identification away from x. That means that BunG(X ′) =
BunG(X)×BunG(X−x) BunG(X).

We may then give DMod BunG(X ′) a monoidal structure (different from the usual com-
mutative one) via the convolution product. Moreover, this category acts on DMod BunG(X)
by the formula

H · E = p2∗(H ⊗ p∗1E)

for H ∈ DMod BunG(X ′) and E ∈ DMod BunGX. This is entirely analogous to the fact that
complex valued functions on {1, . . . , n} × {1, . . . , n} form an algebra (the matrix algebra)
which acts on complex valued functions on {1, . . . , n}. Indeed, the only thing one needs to
carry out that construction is a function theory.

Now, the category DMod BunG(X ′) has a certain global nature; we would like to pass to
a smaller category which only depends on what happens close to x. We are therefore lead
to consider the formal disk Dx = SpecC[[t]] around x, where t is a uniformizer, and the
ravioli Dx = Dx ∪ {x′} which is the disk with a double center. In the same way as above,
the category DMod BunG(D′x) has a monoidal structure. Moreover, there is a canonical
(monoidal) map

DMod BunG(D′x)→ DMod BunG(X ′)

and so DMod BunG(D′x) also acts on our category of interest DMod BunG(X).

Definition. DMod BunG(D′x) = Hx is called the Hecke category.

Our objective for most of this talk will be to understand this category, since it is the
natural object acting on our main category of interest DMod BunG(X).

Example: Let’s take G = GL1. Then BunG is the stack of line bundles. Let’s work at the
level of isomorphism classes. Then we have

BunG(D′x) = H1(D′x,O×D′
x
)

This may be computed using the Čech cover given by the two branches of the disk, yielding
the complex

1→ C[[t]]× × C[[t]]× → C((t))× → 1

and so we see that H1(Dx,O×D′
x
) = Z. A D-module on this space is just given by the collection

of its fibers, and therefore Hx is the category of Z-graded vector spaces. The action of Hx on
DMod BunG(X) is then determined by the action of δn, the skyscraper sheaf concentrated
at n ∈ Z. This may be seen to be induced from the map

BunG(X)→ BunG(x)

L 7→ L(nx)
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Hecke algebras and double cosets

We now give a second point of view on the Hecke category, as a categorification of the concept
of a Hecke algebra.

Let H ≤ G be groups. We may wish to consider at first just finite groups so what follows
is all well defined and there are no technical issues, although the idea should hold in different
contexts with more or less technicalities.

The basic question Hecke algebras answer is the following: what object acts on H-
invariants of all G-representations? This question, although informally stated, has a precise
answer, namely the algebra End(−H) of endomorphisms of the functor−H : G−Rep→ Vec of
G-invariants. That functor is represented by the induced representation IndGH(1), where 1 is
the trivial H-representation, which may be described as the space Fun(G/H) of functions on
G/H. Therefore, our algebra of interest is EndG(Fun(G/H)). Now, linear endomorphisms of
Fun(G/H) are given by functions on G/H×G/H with the convolution product, and therefore
it follows that G-invariant endomorphisms are given by Fun(G/H×GG/H) = Fun(H\G/H).
That leads us to the following

Definition. The Hecke algebra of G, H is Fun(H\G/H) with the convolution product.

Observe for example that when H = 1 we are just saying that the group algebra of G is
the object that acts on all linear representations of G.

We now relate this concept to the Hecke category.

Claim. BunG(D′x) is a double coset space.

To see that, observe that BunG(D′x) consists of pairs of bundles P1, P2 on the disk,
together with an isomorphism α on the punctured disk. If we choose a trivialization for
P1, P2 then α becomes an element of the gauge group G(Kx), where Kx = C((t)). The
changes in trivialization are given by the group G(Ox), where Ox = C[[t]]. Quotienting out
by this, we see that

BunG(D′x) = G(Ox)\G(Kx)/G(Ox)

which may be thought of as a noncommutative version of the Čech argument for G = GL1.
It follows that Hx = DMod(G(Ox)\G(Kx)/G(Ox)) is just a categorified Hecke algebra.

We may also explain the action of Hx on DMod BunG(X) from this point of view. In
the same way that above, any point in BunG(X) may be trivialized away from finitely many
points of X. One may also trivialize it on a formal disk around every point of X. The
clutching functions give an element of the restricted product

∏′
y∈X G(Ky), and quotienting

out by the changes in trivializations one gets

BunG(X) = G(C(X))\
∏
y∈X

′
G(Ky)/G(Oy)

In particular, DMod BunG(X) = DMod(G(C(X))\
∏′

y 6=X G(Ky)/G(Oy) × G(Kx))G(Ox) so
DMod BunG(X) is indeed G(Ox)-invariants of a G(Kx)-representation.
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Incidentally, the above formula gives us a link between this geometric theory and the
arithmetic case: in classical Langlands the left hand side does not make sense, but one has
an analogous object to the right hand side, namely G(F )\G(AF )/G(OF ) where F is a number
field and AF is its ring of adeles. Instead of having D-modules one has L2 functions on this
space - the passage from one to the other is via Grothendiecks function-sheaf dictionary
together with the Riemann Hilbert correspondence.

The Affine Grassmannian

Definition. The affine Grassmannian is

GrG,x = G(Kx)/G(Ox)

This is supposed to be an analogue of the Grassmannian for loop groups. Observe that,
based on the previous discussion, we have BunG(D′x) = G(Ox)\GrG,x. It turns out that
the affine Grassmannian does not have stacky behavior, however it happens to be infinite
dimensional. It may be shown in fact that it is an ind-scheme. We may also give a moduli
interpretation for GrG,x, as the moduli of bundles on the disk which are trivialized away
from x.

Example: Let G = GLn. We define a lattice to be an Ox-submodule L of Kn
x such that

tMOn
x ⊂ L ⊂ t−MOn

x for M >> 0. A typical picture of a lattice (where the dots represent
the canonical basis of Kn

x as a C-vector space) is

Observe that (the closed points of) G(Kx) act transitively on the set of lattices, and
moreover the stabilizer of On

x is G(Ox). It follows that the closed points of GrG,x are in
correspondence with lattices. This should give an idea as to why GrG,x is indeed an ind
scheme, since for any fixed bound M the lattices form a (finite dimensional) projective
variety.

Now, what are the G(Ox)-orbits in this example? It is not hard to see that every orbit has
a unique decreasing lattice, corresponding to the class of a diagonal matrix with i-th diagonal
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entry tki , where ki are increasing. It follows that the set of orbits is given by Zn/Sn. Now
something extraordinary happens: this set parametrizes irreducible representations of GLn.
Therefore we have a correspondence between (isomorphism classes of) points in BunG(D′x)
and irreducible representations of GLn.

The geometric Satake equivalence generalizes that fact in two directions: it works for
any reductive group, not only GLn, and moreover it deals with the Hecke category instead
of the orbits.

Let’s first discuss what happens for other groups. Our first guess may be that G(Ox)-
orbits should be in correspondence with irreducible representations of G, however that turns
out to be wrong. Let T ⊂ G be a maximal torus, Λ∨T and ΛT be the lattices of cocharacters
and characters, and let W be the Weyl group. Then what one has is that G(Ox)-orbits are
in correspondence with ΛT/W . However representations of G are classified by Λ∨T/W , and
ΛT and Λ∨T may be different if G is not GLn. The insight of Langlands was that ΛT is the
lattice of characters of a different group G∨, called the Langlands dual group of G. One
therefore has a bijection

{G(Ox)−orbits} ↔ {Irreducible representations of G∨}

The group G∨ may be defined as the reductive group with dual root data to that of G.
This duality fixes the families A,D and exceptionals, and switches B and C. At the level of
topology, it switches the adjoint and simply connected forms. A few instances of this duality
are

G G∨

GLn GLn

SLn PGLn

Spn SO2n+1

Spin2n+1 Spn/(Z/2)
Spin2n SO2n/(Z/2)

Satake

We are now ready to state the geometric Satake correspondence. It will be a categorification
of the above statement about orbits. Let us first state the classical Satake isomorphism

Theorem (Satake 1963, Langlands). Let q = pn for some prime p. The spherical Hecke
algebra

C[G(Fq[[t]])\G(Fq((t))/G(Fq[[t]])]

is isomorphic to the complexified representation ring of G∨.

This statement implies the statement about orbits that we stated before (although now
in a function field context), but it also says something new about the product structure.
Finally, we get to the geometric Satake correspondence:
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Theorem (Lusztig, Drinfeld, Ginzburg, Mirkovic, Vilonen). There is a monoidal equivalence

Hx = RepG∨

This is a Tannakian reconstruction theorem. One first shows that Hx has a fiber functor,
is semisimple and symmetric monoidal. Then one has to work a bit more to show that the
Tannakian group coincides with the Langlands dual group defined in terms of root data.
One may also think about this theorem as giving a geometric definition of the group G∨.

The fiber functor for Hx is essentially the functor of solutions to D-modules. The sym-
metry is a bit more interesting: to prove it one has to construct a space which puts together
all the affine Grassmannians as we vary the point x. This is a basic example of a factor-
ization space. One then shows that the product in Hx is also obtained in a geometric way
by colliding points in X. This fact allows one to show symmetry, in a similar way as the
usual proof for the commutativity of the higher homotopy groups. The idea of factorization
goes back to work of Beilinson and Drinfeld, however similar ideas had previously appeared
in theoretical physics in the context of conformal field theory (which were later formalized
in terms of vertex algebras). Indeed, linearizations of factorization spaces give factorization
algebras (or chiral algebras) which encode the basic structure that one finds in quantum field
theory.

Example: We go back to the case G = GL1. Recall that Hx is the category of Z-graded
vector spaces. This is indeed equivalent to the category of GL1-representations, since any
representation splits into direct sum of one dimensional ones. This shows that GL∨1 = GL1.

Geometric Langlands

We now go back to our initial object of interest, DMod BunG(X). By the above theorem (in
particular, the ideas of factorization!), we have a family of commuting operators HV,x called
Hecke operators, indexed by a point x ∈ X and a representation V ∈ RepG∨. The geometric
Langlands correspondence may be thought of as a spectral decomposition of DMod BunG(X)
under this action. Equivalently, it gives a simultaneous diagonalization of the Hecke opera-
tors.

Let’s allow ourselves to follow this idea rather informally to see where it leads. In this
categorified context, we are supposed to find a space Z of eigenvectors, so that

DMod BunG(X) = QCoh(Z)

The space Z should live above SpecH whereH =
⊗

x∈X Hx is the total Hecke category, which
we think of as being a categorified version of a commutative algebra. Now, let’s assume that
for each possible eigenvalue of the action there is exactly one eigenvector (usually called a
Hecke eigensheaf). This means that Z = SpecH. Then the above equivalence becomes

DMod BunG(X) = QCoh(SpecH)
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Now, the remaining question is, what is SpecH?. A point in that space is supposed to
be some sort of map

H → Vec

x ∈ X, V ∈ RepG∨ 7→ vector space

Equivalently, that is a map

V ∈ RepG∨ 7→ (x ∈ X 7→ vector space)

The object on the right is just a vector bundle on X. It turns out in fact that one has
to consider flat vector bundles on the right (the reason for this having to do with what
we mean exactly by

⊗
x∈X Hx). Therefore points in SpecH are machines that take in

representations of G∨ and give out flat vector bundles. These are just G∨-local systems, so
we have SpecH = LocSysG∨ . Putting everything together, we have the following statement:

Conjecture (Naive Geometric Langlands Correspondence). There is an equivalence

DMod BunGX = QCoh LocSysG∨ X

which commutes with the action of the Hecke operators.

The left side of the correspondence is called the automorphic or geometric side, and the
right side is the Galois or spectral side. This conjecture as it is is known to be wrong. To
get a statement that has a chance to be true, one has to take everything to be derived, and
replace coherent sheaves on the right by ind coherent sheaves with a certain singular support.
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