
CATEGORIFICATION OF SHEAF THEORY

G. STEFANICH

Abstract. We discuss a systematic procedure for categorifying presentable six functor
formalisms. Our main result produces, given the input of a representation of the ∞-
category of correspondences of an ∞-category with finite limits C, a compatible sequence
of representations of the (∞, n)-category of correspondences of C for every n ≥ 1. As an
application, we explain a general recipe for constructing topological field theories.
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1. Introduction

Let X be an algebraic stack over a base ring k, and let QCoh(X) be the stable ∞-category
of quasi-coherent sheaves on X. In good cases, for each closed manifold M we have an
identification ∫

M

QCoh(X) = QCoh(Maps(M,X))

where the left hand side denotes the factorization homology of QCoh(X) regarded as an
E∞-algebra in presentable stable k-linear∞-categories, and Maps(M,X) denotes the derived
moduli stack parametrizing locally constant maps from M into X.
The fundamental ingredient needed in order to make the above factorization homology

computation is the categorical Künneth formula: in good cases, for every pair of maps of
algebraic stacks Y → S and Z → S one has an identification

QCoh(Y )⊗QCoh(S) QCoh(Z) = QCoh(Y ×S Z).

This is the case for instance when all the stacks involved are perfect in the sense of [BZFN10];
this includes for instance schemes, and many algebraic stacks in characteristic zero.
When working with more general sheaf theories, the categorical Künneth formula often

tends to fail. This is the case for instance in the theories of ind-coherent sheaves and
étale sheaves. Even for quasi-coherent sheaves, when working in positive characteristic the
categorical Künneth formula is known only under fairly restrictive conditions, and we expect
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that it in fact often fails, given the known pathologies for QCoh in that setting [Ste25]. In
light of this, it is not surprising that the more general formula∫

M

Sh(X) = Sh(Maps(M,X))

often fails. Examples are not hard to find: if Sh = IndCoh then the formula is false already
when M is a circle and X is the affine line.

The goal of this note is to present a framework that, among other things, allows one to
obtain a replacement of the factorization homology formula for a general sheaf theory Sh.
The general statement will not (and cannot) be about factorization homology; instead, we
will obtain Sh(Maps(M,X)) as the value on M of a topological field theory.

Sheaf-theoretic topological field theories. The connection between factorization ho-
mology and topological field theory is given by [Sch14]: factorization homology provides the
values of topological field theories valued in Morita higher categories. Thus one can recast
the original QCoh-factorization homology formula as follows: for good enough X, there is an
equivalence

χnMor,QCoh,X(M) = QCoh(Maps(M,X))

where
χnMor,QCoh,X : nCob→ nMor(Prst,k)

is a fully extended unoriented topological field theory valued in the Morita theory of En-
monoidal presentable stable k-linear ∞-categories, with n being the dimension of M . We
remark that although the source of χnMor,QCoh,X involves cobordisms of dimension at most n,
we may secretly think of this as being an (n+ 2)-dimensional topological field theory, given
the categorical complexity of its outputs: indeed, its values on manifolds of dimension n are
not numbers but ∞-categories.

In the same way that the factorization homology formula does not work for general sheaf
theories, we should not expect to obtain Sh(Maps(M,X)) as the value of a topological field
theory valued in En-monoidal presentable∞-categories. Instead, our topological field theories
will be valued in presentable higher categories [Ste20b].

Up to size issues, one may think about a presentable (∞, n)-category inductively as being
an (∞, n)-category which has colimits and whose Homs are presentable (∞, n− 1)-categories.
The totality of all presentable (∞, n)-categories forms a symmetric monoidal (∞, n + 1)-
category nPr. Imposing stability and k-linearity at the level of (n− 1)-cells yields a variant
nPrst,k which receives a symmetric monoidal functor

nMod : nMor(Prst,k)→ (n+ 1)Prst,k .

Already for QCoh, the passage from nMor(Prst,k) to (n+ 1)Prst,k has the benefit of allowing
one to formulate a result which places no restrictions on the stacks:

Theorem 1.1. For every algebraic stack X over k and every n ≥ 0, there is a symmetric
monoidal functor χ(n+1)QCoh,X : nCob→ (n+ 1)Prst,k such that for every closed manifold M
of dimension n we have an equivalence

χ(n+1)QCoh,X(M) = QCoh(Maps(M,X)).

The value of χ(n+1)QCoh,X on the point is given by the (∞, n+1)-category (n+1)QCoh(X)
of quasi-coherent sheaves of (∞, n)-categories on X which we introduced in [Ste21], and the
above theorem is a direct consequence of the functoriality properties of (n+1)QCoh together
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with [CHS25] theorem D. From this perspective, the role of the categorical Künneth formulas
in factorization homology computations is played by the base change formulas in the theory
of sheaves of higher categories.

The connection between χ(n+1)QCoh,X and χnMor,QCoh,X is given by the 1-affineness theorems
of [Gai15, Ste21]: for X good enough, one has an equivalence

(n+ 1)QCoh(X) = nModQCoh(X) .

As shown in [Ste25], 1-affineness fails often beyond characteristic zero, so although theorem
1.1 still holds, it cannot be rephrased in Morita theory terms.

The output of this note is a theory that allows one to generalize theorem 1.1 beyond the
quasi-coherent setting. In fact, there is nothing special about the setting of algebraic stacks:
one may work on a general ∞-category with finite limits:

Theorem 1.2. Let C be an ∞-category with finite limits and let Sh be a presentable six
functor formalism on C (see 1 below). Then there exists a sequence of presentable symmetric
monoidal (∞, n+ 1)-categories Tn with EndTn(1Tn) = Tn−1 for all n ≥ 1, with the following
feature: for every object X in C and every n ≥ 0 there is a symmetric monoidal functor
χ(n+1)Sh,X : nCob→ Tn+1 such that for each closed manifold M of dimension n there is an
equivalence

Γ(χ(n+1)Sh,X(M)) = Sh(Maps(M,X))

where Γ(−) = HomT1(1T1,−) denotes the passage to the underlying ∞-category.

Theorem 1.2 works formally just like theorem 1.1 and is a direct consequence of the
existence of a family of categorifications nSh of Sh with good functoriality properties, which
is what this note aims to establish. The only extra twist beyond the quasi-coherent setting is
that the targets Tn may be somewhat exotic. One in fact has that Tn = (n+ 1)Sh(1C), and
for each closed manifold M of dimension 0 ≤ d ≤ n, the value of χ(n+1)Sh,X on M is given by
a canonical upgrade of (n+ 1− d)Sh(X) to (n+ 2− d)Sh(1C).
As a specialization of theorem 1.2 one obtains the following:

Corollary 1.3. Let X be a smooth scheme over a field k of characteristic zero. Then there
exists a symmetric monoidal functor χ2IndCoh,X : 1Cob→ 3IndCoh(Spec(k)) such that

χ2IndCoh,X(S
1) = IndCoh(Maps(S1, X)) = QCoh(T ∗[2]X).

The topological field theory from corollary 1.3 may be thought of as a mathematical
incarnation of the Rozansky-Witten theory of T ∗X [KRS09]. More precisely, χ2IndCoh,X

satisfies the design criteria for a conical version of Rozansky-Witten theory; non-conical
versions can also be obtained after a suitable two-periodization of this construction.

The ∞-category IndCoh(Maps(S1, X)) arises not only as the value on S1 of the theory,
but also as the center: IndCoh(Maps(S1, X)) has a canonical acion on 2IndCoh(X). Via
Koszul duality, this allows one to express 2IndCoh(X) as the global sections of a sheaf of
(∞, 2)-categories on T ∗X with its conical Zariski topology. In other words, the theory of
ind-coherent sheaves of categories on X is not only local on X, but also admits a microlocal
theory, which may be thought of as a categorification of the microlocal theory of ind-coherent
sheaves developed in [AG15].

We also have the following specialization of 1.2 which is relevant in four dimensions:
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Corollary 1.4. Let G be an affine algebraic group over a field k of characteristic zero. Then
there exists a symmetric monoidal functor χ3IndCoh,BG : 2Cob→ 4IndCoh(Spec(k)) such that
for every closed manifold M of dimension 2 we have an equivalence

χ3IndCoh,BG(M) = IndCoh(Maps(M,X)).

Corollary 1.4 is consistent with the expectation that the various structures arising in
(the Betti form of) the geometric Langlands program may be organized into the framework
of 4-dimensional topological field theory [KW07, BZN18]. More precisely, it provides a
realization of a version of the spectral Betti geometric Langlands TQFT with no restriction
on the central parameters (that is, no conditions of nilpotent singular support). A version of
corollary 1.4 with nilpotent singular support is the subject of upcoming work.

Categorification of sheaf theories. Let C be an ∞-category with finite limits. Asso-
ciated to C there is a symmetric monoidal ∞-category Corr(C) called the ∞-category of
correspondences, with the following features:

• The anima of objects of Corr(C) agrees with the anima of objects of C.
• Let X and Y be a pair of objects of C. Then a morphism from X to Y in Corr(C)
consists of a span X ← S → Y in C.
• Let X ← S → Y and Y ← T → Z be a pair of spans in C, which we regard as
morphisms in Corr(C). Then their composition is given by the span X ← S×Y T → Z.
• Let X and Y be a pair of objects of C. Then their tensor product in Corr(C) is given
by X × Y .

As explained in [GR17], the ∞-category Corr(C) (and variants of it) provides a convenient
way of capturing the functoriality present in various sheaf theories of interest. More precisely,
if T is a symmetric monoidal (∞, 2)-category whose objects we think about as being ∞-
categories of some sort, then a lax symmetric monoidal functor Sh : Corr(C)→ T gives rise
to the following data:

• For each object X in C an object Sh(X) in T which we think of as the ∞-category of
sheaves on X.
• For each map f : X → Y in C a pair of morphisms f ∗ : Sh(Y ) → Sh(X) and
f! : Sh(X)→ Sh(Y ) which we think of as pullback and pushforward functors.
• For each cartesian square

X ′ X

Y ′ Y

f ′

g′

f

g

in C, an isomorphism f ′
! g

′∗ = g∗f!.
• For each pair of objects X, Y in C, a morphism ⊠ : Sh(X) ⊗ Sh(Y ) → Sh(X × Y )
which we think about as the exterior tensor product functor.

Lax symmetric monoidal functors out of Corr(C) are called three functor formalisms, and
requiring right adjoints to f!, f

∗ and F⊠− one arrives at the notion of a six functor formalism
[Man22, Sch23]. The existence of these extra adjoints is automatic when the target is the
(∞, 2)-category Pr of presentable∞-categories; in this case a lax symmetric monoidal functor
Sh : Corr(C)→ Pr is called a presentable six functor formalism.

As explained in [Ste20a, Ste21], when working with theories of sheaves of higher categories
one tends to encounter much stronger functoriality properties than in ordinary sheaf theory.
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In this context, the role of Corr(C) is played by the symmetric monoidal (∞, n)-category
nCorr(C), which in the case n = 1 agrees with Corr(C) and for n > 1 admits the following
informal inductive description:

• The anima of objects of nCorr(C) agrees with the anima of objects of C.
• Let X and Y be a pair of objects of C. Then the (∞, n− 1)-category of morphisms
from X to Y in nCorr(C) is given by (n− 1)Corr(X\C/Y ).
• Let X and Y be a pair of objects of C. Then their tensor product in nCorr(C) is given
by X × Y .

Our main result constructs, for every presentable six functor formalism Sh : Corr(C)→ Pr,
a compatible sequence of categorified formalisms nSh : nCorr(C) → nPr which we think
about as providing theories of sheaves of higher categories of flavor Sh. More precisely, we
have the following:

Theorem 1.5. Let C be an ∞-category with finite limits, and let Sh : Corr(C)→ Pr be a lax
symmetric monoidal functor. Then there exists:

• A sequence of presentable symmetric monoidal (∞, n+1)-categories Tn with EndTn(1Tn) =
Tn−1 for all n ≥ 1.
• A sequence of symmetric monoidal functors nSh♯ : nCorr(C) → Tn such that the
resulting square

EndnCorr(C)(1C) EndTn(1Tn)

(n− 1)Corr(C) Tn−1

nSh♯

= =

(n−1)Sh♯

commutes, and with the feature that Sh(−) = HomT1(1T1 , 1Sh
♯(−)).

Furthermore, the cells in Tn are generated under (weighted) colimits by cells in the image
of nSh♯, and the unique symmetric monoidal functor nPr→ Tn admits a colimit preserving
right adjoint Γ(−).

In the language of [Ste21], the sequence of higher presentable categories Tn assembles into
a categorical spectrum, and the sequence of functors nSh♯ assembles into a representation of
the categorical spectrum of correspondences of C.

Although in general the targets Tn are different from nPr, one may obtain (non symmetric
monoidal) functors valued in nPr by setting nSh(−) = Γ(nSh(−)♯). In the case n = 1 this
recovers the starting sheaf theory. In general, the conditions from the statement of theorem
1.5 imply the following inductive description:

• (n+ 1)Sh(X) is a presentable (∞, n+ 1)-category freely generated under weighted
colimits by the objects nSh(Y/X) which are obtained by pushforward along a map
Y → X of the unit of (n+ 1)Sh(Y ).
• Given a pair of maps Y → X and Z → X one has

Hom(nSh(Y/X), nSh(Z/X)) = nSh(Y ×X Z).

In general, the (∞, n)-category nSh(X) is rather complex: the above description shows
that it has generators which are parametrized by maps Y → X. It is however often possible
to show that a smaller collection of generators suffice. We refer to section 4 for a discussion
of the basic computational toolset that allows this.
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1.7. Conventions and notation. In the remainder of this text we follow the convention
where the word category stands for ∞-category, and use the term n-category to refer to
(∞, n)-categories. We also use the terms scheme and stack to refer to spectral schemes and
stacks.
We make use throughout this text of the theory of enriched (higher) categories. For

each possibly large monoidal categoryM we denote by CatM the category ofM-enriched
categories with a small anima of objects. In the case whenM is symmetric monoidal, CatM

has an induced symmetric monoidal structure, so it makes sense to define nCatM inductively
for all n ≥ 1 as follows:

• If n = 1 then nCatM = CatM.
• If n > 1 then nCatM = Cat(n−1)CatM = (n− 1)CatCatM .

Objects of nCatM are calledM-enriched n-categories. In the special case whenM is the
category of small anima we set nCat = nCatM, and call it the category of n-categories.
The assignmentM 7→ CatM is functorial in lax monoidal functors inM. Given such a

functor F :M→M′ we denote by F! : Cat
M → CatM

′
the induced map. In the case when

F is a (lax) symmetric monoidal functor between symmetric monoidal categories we have
that F! is also (lax) symmetric monoidal.
If A is an algebra in a monoidal category M we denote by BA the corresponding M-

enriched category. The assignment A 7→ BA provides a fully faithful embedding from the
category of algebras inM into the category of pointedM-enriched categories. We denote
by Ω its right adjoint; in other words, this is the functor which sends a pointedM-enriched
category (D, X0) to the algebra of endomorphisms of X0.
In the case whenM is symmetric monoidal, the assignment A 7→ BA has a symmetric

monoidal structure. In particular, if A is a commutative algebra then BA has the structure of
symmetric monoidalM-enriched category. Iterating the construction A 7→ BA we may thus
define for each n ≥ 1 a symmetric monoidalM-enriched n-category BnA. The assignment
A 7→ BnA has a right adjoint which we denote by Ωn.

2. Enrichment of nCorr(C)

Let C be a category with finite limits. Then every object of Corr(C) is self dual. In
particular, the symmetric monoidal structure on Corr(C) is closed, so that Corr(C) has a
canonical structure of Corr(C)-enriched category. The goal of this section is to show that,
more generally, nCorr(C) may be given the structure of a Corr(C)-enriched n-category for all
n ≥ 1.

Notation 2.1. Let M be a presentable symmetric monoidal category, and let A be a
commutative algebra in M. Let G : ModA(M) → M be the forgetful functor, which
we equip with its canonical lax symmetric monoidal structure. Consider the induced lax
symmetric monoidal functor

G! : Cat
ModA(M) → CatM .
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This induces a lax symmetric monoidal functor

CatModA(M) = Mod1
CatModA(M)

(CatModA(M))→ ModG!1
CatModA(M)

(CatM).

Observe that G!11
CatModA(M)

= BA as symmetric monoidalM-enriched categories. We denote

by

ΓA : CatModA(M) → ModBA(Cat
M)

the induced lax symmetric monoidal functor.

Proposition 2.2. Let M be a presentable symmetric monoidal category and let A be a
commutative algebra inM. Then the lax symmetric monoidal functor ΓA from notation 2.1
is a symmetric monoidal equivalence.

Proof. Let Algbrd(M) (resp. Algbrd(ModA(M))) be the category of M-algebroids (resp.
ModA(M)-algebroids); that is, these are the categories of non-necessarily univalent enriched
categories. Let BpreA be theM-algebroid with a single object and endomorphisms A, and
note that we have a lax symmetric monoidal functor

Γpre
A : Algbrd(ModA(M))→ ModBpre(A)(Algbrd(M))

defined similarly to ΓA. The proposition will follow if we show that Γpre
A is a symmetric

monoidal equivalence. Let Gpre
! : Algbrd(ModA(M)) → Algbrd(M) be the lax symmetric

monoidal functor induced by G. Note that Gpre
! is right adjoint to the symmetric monoidal

functor F pre
! induced from F . A monadicity argument reduces us to proving the following:

(i) Gpre
! commutes strictly with the action of Algbrd(M).

(ii) Let S• be a simplicial diagram in Algbrd(ModA(M)) and assume that Gpre
! S• is the

simplicial Bar resolution of some BpreA-module in Algbrd(M). Then Gpre
! preserves the

geometric realization of S•.
(iii) Gpre

! is conservative.

Item (iii) follows readily from the fact that G is conservative, while item (i) follows from the
fact that G commutes strictly with the action ofM. It remains to establish (ii). Since the
anima of objects of BpreA is a singleton the simplicial anima underlying Gpre

! S• is constant.
It follows that the simplicial anima underlying S• is constant. Consequently, we may reduce
to showing that for each anima J the functor AlgbrdJ(ModA(M))→ AlgbrdJ(M) induced
by G on algebroids with anima of objects J preserves geometric realizations. This follows
from the fact that G itself preserves geometric realizations. □

Notation 2.3. Let n ≥ 1. LetM be a presentable symmetric monoidal category, and let A
be a commutative algebra inM. We define a lax symmetric monoidal functor

Γn
A : nCatModA(M) → ModBnA(nCat

M)

by induction on n as follows:

• If n = 1 we let Γn
A be the lax symmetric monoidal functor ΓA from notation 2.1.

• Assume that n > 1. Then we let Γn
A be given by the composition

nCatModA(M) = Cat(n−1)CatModA(M) (Γn−1
A )!−−−−→ CatModBn−1A((n−1)CatM)

ΓBn−1A−−−−→ ModBnA(Cat
(n−1)CatM)

= ModBnA(nCat
M)
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Corollary 2.4. Let n ≥ 1. LetM be a presentable symmetric monoidal category, and let A
be a commutative algebra inM. Then the lax symmetric monoidal functor Γn

A from notation
2.3 is a symmetric monoidal equivalence.

Proof. Follows from an inductive application of proposition 2.2. □

Definition 2.5. Let A be a symmetric monoidal category. We say that an A-module category
D is closed if it admits all Hom objects. We denote by ModA(Cat)closed the full subcategory
of ModA(Cat) on the closed A-modules.

Remark 2.6. Let A be a symmetric monoidal category, and assume that every object of
A is dualizable. Then ModA(Cat)closed is closed under tensor products inside ModA(Cat).
Furthermore, the procedure of A-enrichment of closed A-modules assembles into a fully
faithful symmetric monoidal functor ModA(Cat)closed → CatA.

Definition 2.7. Let n ≥ 1 and let A be a symmetric monoidal category, which we regard as
a commutative algebra inM = Cat. Assume that every object of A is dualizable. We say
that a Bn−1A-module D in nCat is closed if the inverse image of D under Γn−1

A belongs to

(n− 1)CatModA(Cat)closed ⊆ (n− 1)CatModA(Cat).

Definition 2.7 provides a way of equipping an n-category D with an enrichment over a
symmetric monoidal category A such that all objects of A dualizable: it is enough to equip D
with the structure of a closed module over Bn−1A. We now apply this to our case of interest:

Proposition 2.8. Let C be a category with finite limits and let n ≥ 2. Consider the symmetric
monoidal functor

Bn−1Corr(C) = Bn−1Ωn−1nCorr(C)→ nCorr(C)
obtained from the counit of the Bn ⊣ Ωn adjunction. Then the induced Bn−1Corr(C)-module
structure on nCorr(C) is closed.

The closure conditions needed to establish proposition 2.8 all follow from the following:

Proposition 2.9. Let C be a category with finite limits. Let X be an object of C and consider
the canonical action of Corr(C) on Corr(C/X). Then Corr(C/X) is a closed module over
Corr(C).

Proof. The module structure arises by restriction of scalars from the symmetric monoidal
functor α : Corr(C)→ Corr(C/X) induced by the functor C → C/X of product with X. Since
α admits a right adjoint, we may reduce to showing that Corr(C/X) is closed as a module over
itself. Indeed, this follows from the fact that every object in a category of correspondences is
dualizable. □

Notation 2.10. Let C be a category with finite limits and let n ≥ 2. It follows from proposi-
tion 2.8 that the inverse image of nCorr(C) under Γn−1

Corr(C) belongs to (n−1)Cat
ModCorr(C)(Cat)closed .

We let nCorrenr(C) be its image under the functor

(n− 1)CatModCorr(C)(Cat)closed → (n− 1)CatCatCorr(C)
= nCatCorr(C)

induced from the symmetric monoidal inclusion ModCorr(C)(Cat)closed → CatCorr(C) (see remark
2.6). We extend this notation also to the case n = 1 by letting Correnr(C) be the Corr(C)-
enriched category associated to the closed symmetric monoidal structure on Corr(C).
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3. Construction of nSh(X)

We now turn to the proof of theorem 1.5. We will construct the maps

nSh♯ : nCorr(C)→ Tn
as functors of pointed n-categories. The compatibilities between different values of n will be
manifest from the construction. Note that the symmetric monoidal structures on Tn and nSh
follow from these compatibilities.

Notation 3.1. LetM be a symmetric monoidal category. We denote by ΓM :M→ An
the functor corepresented by the unit ofM. We equip ΓM with the induced lax symmetric
monoidal structure.

Remark 3.2. LetM be a symmetric monoidal category. Then ΓM is the initial lax symmetric
monoidal functor fromM into anima.

Notation 3.3. Let n ≥ 1. We let

nMod : nCatPr → (n+ 1)Pr

be the canonical functor. In other words, nMod is obtained by freely adding colimits of cells
of dimension 0 ≤ d ≤ n. We note that for each object D in nCatPr we have a morphism
YD : D → nModD.

Construction 3.4. Let C be a category with finite limits, and let Sh : Corr(C) → Pr be
a lax symmetric monoidal functor. Let η : ΓCorr(C) → Sh be the canonical lax symmetric
monoidal natural transformation. For each n > 1, we have that η induces a functor

nSh♯,pre : nCorr(C) = (ΓCorr(C))!nCorr
enr(C)→ Sh! nCorr

enr(C).

We let Tn = nModSh! nCorrenr(C), and let nSh♯ be the composite functor

nCorr(C) nSh♯,pre−−−−→ Sh! nCorr
enr(C)

YSh! nCorrenr(C)−−−−−−−−→ Tn.

Remark 3.5. Construction 3.4 naturally breaks up into several steps. First one has
nCorrenh(C): this is an enrichment of nCorr(C) over Corr(C), described informally by the
requirement that the Hom object between a pair of (n− 1)-cells corresponding to objects Y
and Z in some overcategory C/S is given by Y ×S Z.

Then Sh! nCorr
enh(C) is defined, which forms the target of the functor nSh♯,pre. This

satisfies all the design criteria for our theorem 1.5 except for the existence of colimits: every
cell in Sh! nCorr

enh(C) is geometric. The desired categorifications are finally obtained by
adding colimits.

4. Descent and affineness

We close this note with a discussion of the fundamental tools for working with the
categorifications of a sheaf theory. We begin with a discussion of descent.

Definition 4.1. Let C be a category with finite limits, and let Sh : Corr(C)→ Pr be a lax
symmetric monoidal functor. Let f : X → Y be a map in C with Čech nerve X•. We say
that f satisfies Sh-codescent if Sh(Y ) is the geometric realization (in Pr) of Sh(X•). We say
that f satisfies universal Sh-codescent if every base change of f satisfies Sh-codescent.
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Proposition 4.2. Let C be a category with finite limits, and let Sh : Corr(C) → Pr be a
lax symmetric monoidal functor. Let f : X → Y be a map in C with Čech nerve X•. The
following are equivalent:

(1) f satisfies universal Sh-codescent.
(2) 2Sh(Y ) is the totalization of 2Sh(X•).
(3) nSh(Y ) is the totalization of nSh(X•) for all n ≥ 1.
(4) nSh♯(Y ) is the totalization of nSh♯(X•) for all n ≥ 1.

Proof. The canonical functor 2Sh(Y ) → Tot 2Sh(X•) admits a fully faithful left adjoint.
Consequently, (2) is equivalent to the assertion that the counit of the adjunction is an
isomorphism. This can be checked on the generators Sh(Y ′/Y ), where Y ′ → Y is a map. We
thus see that (2) is equivalent to the assertion that the canonical map

| Sh(X ′
•/Y )| → Sh(Y ′/Y )

is an isomorphism, where X ′
• denotes the Čech nerve of the base change f ′ : X ′ → Y ′ of f .

The above can be checked by applying Hom from an object Sh(Z/Y ). One thus sees that (2)
is equivalent to the assertion that the base change of f to Z ×Y Y ′ satisfies Sh-codescent.
Since Z → Y and Y ′ → Y are arbitrary, we deduce that (2) is equivalent to (1).
Clearly (4) implies (3), which implies (2). Suppose now that (2) holds; note that it also

holds for any base change of f , given the equivalence with (1). By ambidexterity for pullback
and pushforward for 2Sh one sees that for every base change X ′ → Y ′ of f with Čech nerve
X ′

• we have that 2Sh(Y ) is the geometric realization of 2Sh(X ′
•). Repeating the argument

for the equivalence between (1) and (2) one sees that 3Sh(Y ) is the totalization of 3Sh(X•).
Arguing inductively, we deduce that nSh(Y ) is the totalization of nSh(X•) for all n ≥ 2. The
fact that this also holds for n = 1 follows by passing to endomorphisms of the unit.
We have now proven that (2) implies (3), so that (1), (2) and (3) are equivalent. It remains

to show that these also imply (4). Indeed, to check that nSh♯(Y ) is the totalization of
nSh♯(X•) it suffices to show that this is the case after applying Hom from nSh♯(Z) for some
Z in C. This reduces to the fact that (3) holds for arbitrary base changes of f (since (3) has
been shown to be equivalent to (1), which is stable under base change). □

Remark 4.3. Let C be a category with finite limits, and let Sh : Corr(C) → Pr be a lax
symmetric monoidal functor. Suppose that for every finite family of objects Xi in C the
canonical functor C/⨿Xi

→
∏
C/Xi

is an equivalence. Then the following are equivalent:

(1) Sh preserves coproducts
(2) nSh preserves coproducts for all n ≥ 1.
(3) nSh♯ preserves coproducts for all n ≥ 1.

Combined with proposition 4.2, this allows one to obtain concrete criteria for checking if nSh
satisfies descent with respect to a Grothendieck topology.

Example 4.4. Suppose that Sh = QCoh, defined as a sheaf theory on the category of affine
schemes. Then the morphisms which admit QCoh-codescent are precisely the covers for the
descendable topology of [Mat16].

Example 4.5. Suppose that Sh = IndCoh, defined as a sheaf theory on the category of
schemes almost of finite presentation over a field. Then every faithfully flat morphism almost
of finite presentation satisfies IndCoh-codescent. It follows that nIndCoh admits fppf descent.
Similarly, one has that nIndCoh admits descent along proper surjective morphisms.



CATEGORIFICATION OF SHEAF THEORY 11

Example 4.6. Suppose that Sh = QCoh, defined as a sheaf theory on quasi-compact algebraic
stacks with affine diagonal and almost of finite presentation over a field of characteristic zero.
Then nQCoh admits fppf descent thanks to [Ste25] corollary 5.1.4 (in light of propositions
3.3.5 and 4.1.11). Consequently, one sees that nQCoh is Kan extended from affine schemes.

We now turn to a discussion of affineness.

Proposition 4.7. Let C be a category with finite limits, and let Sh : Corr(C)→ Pr be a lax
symmetric monoidal functor. Let n ≥ 1. The following are equivalent:

(1) The canonical functor ModnSh(1C) → (n+ 1)Sh(1C) is an equivalence.
(2) For each pair of objects X, Y of C we have an equivalence

nSh(X)⊗nSh(1C) nSh(Y ) = nSh(X × Y ).

Proof. The fact that (1) implies (2) follows directly from the fact that nSh♯ is symmetric
monoidal. Suppose now that (2) holds. Note that the functor ModnSh(1C) → (n+ 1)Sh(1C) is
fully faithful. Consequently, to show (1) it will suffice to show that for every object X in C
the unit map

1(n+1)Sh(1C) ⊗nSh(1C) nSh(X)→ nSh(X)enh

is an isomorphism. To check this it is enough to prove that this is the case after Hom from
nShenh(Y ) for some Y , in which case our assertion reduces to the formula from (2). □

A mild variant of the proof of proposition 4.7 proves the following relative version:

Proposition 4.8. Let C be a category with finite limits, and let Sh : Corr(C)→ Pr be a lax
symmetric monoidal functor. Let X → Y be a morphism in C, and let n ≥ 1. The following
are equivalent:

(1) (n+ 1)Sh(X) = ModnSh(X/Y )((n+ 1)Sh(Y )).
(2) For every pair of maps Z → X ← W we have an equivalence

nSh(Z/Y )⊗nSh(X/Y ) nSh(W/Y ) = nSh(Z ×X W/Y ).

Corollary 4.9. Let C be a category with finite limits, and let Sh : Corr(C) → Pr be
a lax symmetric monoidal functor. Suppose that for every pair of maps X → S ← Y
in C the canonical functor Sh(X) ⊗Sh(S) Sh(Y ) → Sh(X ×S Y ) is an equivalence. Then
(n+ 1)Sh(X) = nModSh(X) for all n ≥ 1.

Proof. This follows from an inductive application of propositions 4.7 and 4.8. □

Example 4.10. Let Sh = QCoh, defined on the category of affine schemes. Then it follows
from corollary 4.9 that the categorification of quasi-coherent sheaves provided by theorem 1.5
is compatible with the one we constructed in [Ste21].

Example 4.11. Let Sh be the Betti sheaf theory, defined on locally compact Hausdorff
topological spaces. Then it follows from corollary 4.9 that (n+ 1)Sh(X) = nModSh(X) for all
n ≥ 1.

We finish with the following proposition, which spells out the basic affineness properties of
the ind-coherent theory.

Proposition 4.12. Let Sh = IndCoh, defined on the category of schemes almost of finite
presentation over a field k.
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(1) Let X → Y be a closed immersion. Then we have an equivalence

2IndCoh(X) = ModIndCoh(X/Y )(2IndCoh(Y )).

(2) Let X → Y be an arbitrary map. Then we have an equivalence

nIndCoh(X) = Mod(n−1)IndCoh(X/Y )(nIndCoh(Y )).

for all n ≥ 3.
(3)We have an equivalence

nIndCoh(Spec(k)) = Mod(n−1)IndCoh(Spec(k))

for all n ≥ 4.

Proof. We begin with a proof of (1). The canonical functor

ModIndCoh(X/Y )(2IndCoh(Y ))→ 2IndCoh(X)

is fully faithful, so it will suffice to show that its image generates 2IndCoh(X). Note that
IndCoh(X×Y X/X) is an object in the image. Since the projectionX×Y X → X is a surjective
closed immersion, we have that the pushforward map IndCoh(X ×Y X/X)→ IndCoh(X/X)
admits a monadic right adjoint. Item (1) now follows from the fact that Eilenberg-Moore
objects for monads in presentable higher categories can be computed in terms of Kleisli
objects (which are weighted colimits).
We note that (3) follows formally from (2), in light of proposition 4.7. Item (2) may

similarly be reduced to the case n = 3. In this case, proposition 4.7 reduces us to showing
that for every pair of maps Z → X ← W we have an equivalence

2IndCoh(Z/Y )⊗2IndCoh(X/Y ) 2IndCoh(W/Y ) = 2IndCoh(Z ×X W/Y ).

The left hand side may be rewritten as

2IndCoh(Z/Y )⊗ 2IndCoh(W/Y )⊗2IndCoh(X/Y )⊗2IndCoh(X/Y ) 2IndCoh(X/Y )

which is equivalent to

2IndCoh(Z ×Y W/Y )⊗2IndCoh(X×Y X/Y ) 2IndCoh(X/Y ).

Item (2) will now follows by applying (1) to the closed immersions given by the diagonal
X → X ×Y X and its base change to Z ×Y W . □
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